Suppr超能文献

使用源分离方法对气候数据进行探索性分析。

Exploratory analysis of climate data using source separation methods.

作者信息

Ilin Alexander, Valpola Harri, Oja Erkki

机构信息

Laboratory of Computer and Information Science, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Espoo, Finland.

出版信息

Neural Netw. 2006 Mar;19(2):155-67. doi: 10.1016/j.neunet.2006.01.011.

Abstract

We present an example of exploratory data analysis of climate measurements using a recently developed denoising source separation (DSS) framework. We analyzed a combined dataset containing daily measurements of three variables: surface temperature, sea level pressure and precipitation around the globe, for a period of 56 years. Components exhibiting slow temporal behavior were extracted using DSS with linear denoising. The first component, most prominent in the interannual time scale, captured the well-known El Niño-Southern Oscillation (ENSO) phenomenon and the second component was close to the derivative of the first one. The slow components extracted in a wider frequency range were further rotated using a frequency-based separation criterion implemented by DSS with nonlinear denoising. The rotated sources give a meaningful representation of the slow climate variability as a combination of trends, interannual oscillations, the annual cycle and slowly changing seasonal variations. Again, components related to the ENSO phenomenon emerge very clearly among the found sources.

摘要

我们展示了一个使用最近开发的去噪源分离(DSS)框架对气候测量数据进行探索性数据分析的示例。我们分析了一个包含全球范围内三个变量(地表温度、海平面气压和降水量)每日测量值的综合数据集,时间跨度为56年。使用具有线性去噪功能的DSS提取了表现出缓慢时间行为的成分。第一个成分在年际时间尺度上最为突出,捕捉到了著名的厄尔尼诺 - 南方涛动(ENSO)现象,第二个成分接近第一个成分的导数。在更宽频率范围内提取的缓慢成分使用具有非线性去噪功能的DSS所实现的基于频率的分离标准进一步旋转。旋转后的源以趋势、年际振荡、年周期和缓慢变化的季节变化的组合形式,给出了缓慢气候变率的有意义表示。同样,在找到的源中,与ENSO现象相关的成分非常清晰地显现出来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验