Ilin Alexander, Valpola Harri, Oja Erkki
Laboratory of Computer and Information Science, Helsinki University of Technology, P.O. Box 5400, FI-02015 TKK, Espoo, Finland.
Neural Netw. 2006 Mar;19(2):155-67. doi: 10.1016/j.neunet.2006.01.011.
We present an example of exploratory data analysis of climate measurements using a recently developed denoising source separation (DSS) framework. We analyzed a combined dataset containing daily measurements of three variables: surface temperature, sea level pressure and precipitation around the globe, for a period of 56 years. Components exhibiting slow temporal behavior were extracted using DSS with linear denoising. The first component, most prominent in the interannual time scale, captured the well-known El Niño-Southern Oscillation (ENSO) phenomenon and the second component was close to the derivative of the first one. The slow components extracted in a wider frequency range were further rotated using a frequency-based separation criterion implemented by DSS with nonlinear denoising. The rotated sources give a meaningful representation of the slow climate variability as a combination of trends, interannual oscillations, the annual cycle and slowly changing seasonal variations. Again, components related to the ENSO phenomenon emerge very clearly among the found sources.
我们展示了一个使用最近开发的去噪源分离(DSS)框架对气候测量数据进行探索性数据分析的示例。我们分析了一个包含全球范围内三个变量(地表温度、海平面气压和降水量)每日测量值的综合数据集,时间跨度为56年。使用具有线性去噪功能的DSS提取了表现出缓慢时间行为的成分。第一个成分在年际时间尺度上最为突出,捕捉到了著名的厄尔尼诺 - 南方涛动(ENSO)现象,第二个成分接近第一个成分的导数。在更宽频率范围内提取的缓慢成分使用具有非线性去噪功能的DSS所实现的基于频率的分离标准进一步旋转。旋转后的源以趋势、年际振荡、年周期和缓慢变化的季节变化的组合形式,给出了缓慢气候变率的有意义表示。同样,在找到的源中,与ENSO现象相关的成分非常清晰地显现出来。