Suppr超能文献

基于整体理论分子描述符的分类方法对多环芳烃致突变性的定量构效关系建模

Quantitative structure-activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors.

作者信息

Gramatica Paola, Papa Ester, Marrocchi Assunta, Minuti Lucio, Taticchi Aldo

机构信息

QSAR and Environmental Chemistry Research Unit, Department of Structural and Functional Biology, University of Insubria, 21100 Varese, Italy.

出版信息

Ecotoxicol Environ Saf. 2007 Mar;66(3):353-61. doi: 10.1016/j.ecoenv.2006.02.005. Epub 2006 Apr 17.

Abstract

Various polycyclic aromatic hydrocarbons (PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A homogeneous set of mutagenicity data (TA98 and TA100,+S9) for 32 benzocyclopentaphenanthrenes/chrysenes was modeled by the quantitative structure-activity relationship classification methods k-nearest neighbor and classification and regression tree, using theoretical holistic molecular descriptors. Genetic algorithm provided the selection of the best subset of variables for modeling mutagenicity. The models were validated by leave-one-out and leave-50%-out approaches and have good performance, with sensitivity and specificity ranges of 90-100%. Mutagenicity assessment for these PAHs requires only a few theoretical descriptors of their molecular structure.

摘要

各种多环芳烃(PAHs)是普遍存在的环境污染物,是公认的诱变剂和致癌物质。利用理论整体分子描述符,通过定量构效关系分类方法k近邻法和分类回归树,对32种苯并环戊菲/屈的一组均匀致突变性数据(TA98和TA100,+S9)进行了建模。遗传算法为建模致突变性提供了最佳变量子集的选择。通过留一法和留50%法对模型进行了验证,模型具有良好的性能,灵敏度和特异性范围为90%-100%。对这些多环芳烃的致突变性评估仅需其分子结构的几个理论描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验