Zeidler Mathias, Lang Christina, Hahn Janina, Hughes Jon
Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstr. 3, D35390 Giessen, Germany.
Int J Biol Macromol. 2006 Aug 15;39(1-3):100-3. doi: 10.1016/j.ijbiomac.2006.02.028. Epub 2006 Apr 17.
The plant photoreceptor phytochrome senses light quality and quantity in the red region of the spectrum, directing adaptation and development. The functional holo-protein is a dimeric chromoprotein which is formed by an autoassembly reaction between the translation product and the open chain tetrapyrroles phytochromobilin (PPhiB) or phycocyanobilin (PCB). We are interested in structure/function relationships within the phytochrome molecule, in particular chromophore/protein interaction during the assembly and photoactivation, using IR and NMR spectroscopy. For this we use an automated F/HPLC system running in a darkroom to purify large amounts of protein and chromophore separately. To obtain highly pure PCB chromophore we developed improved extraction and purification methods in which the final step is RPC-18 HPLC. As there are many spectrally only slightly different tetrapyrroles in the extract, the triple-wavelength monitoring offered by the F/HPLC detector was inadequate for distinguishing between PCB and impurities. Furthermore, lambda(max) for the phytochrome Pfr signalling state lies between 705 and 730 nm, beyond the range of the detector. Also, as both holo-protein and chromophore are photoactive, we wished to minimize light exposure of the eluate. We therefore implemented a miniature CCD-based flow UV-vis spectrophotometer using a xenon flash and quartz fiber optics enabling us monitor the entire 250-800 nm spectrum of the eluate to an accuracy of +/-3 x 10(-3)A in real time. The instrumentation described can be added to any chromatographic system, thereby allowing the purification of any molecule to be monitored easily and efficiently.
植物光感受器光敏色素可感知光谱中红光区域的光质和光量,指导植物的适应性生长和发育。功能性全蛋白是一种二聚体色素蛋白,由翻译产物与开链四吡咯植物胆色素(PPhiB)或藻蓝胆素(PCB)之间的自组装反应形成。我们对光敏色素分子内的结构/功能关系感兴趣,特别是在组装和光激活过程中的生色团/蛋白质相互作用,采用红外光谱和核磁共振光谱进行研究。为此,我们使用了一套在暗室中运行的自动化F/HPLC系统,分别纯化大量的蛋白质和生色团。为了获得高纯度的PCB生色团,我们开发了改进的提取和纯化方法,其中最后一步是RPC-18 HPLC。由于提取物中有许多光谱上仅有细微差异的四吡咯,F/HPLC检测器提供的三波长监测不足以区分PCB和杂质。此外,光敏色素Pfr信号状态的最大吸收波长在705至730 nm之间,超出了检测器的范围。而且,由于全蛋白和生色团都具有光活性,我们希望尽量减少洗脱液的光照。因此,我们采用了一种基于微型CCD的流动紫外-可见分光光度计,使用氙闪光灯和石英光纤,能够实时监测洗脱液在250-800 nm范围内的整个光谱,精度达到±3×10^(-3)A。所描述的仪器可以添加到任何色谱系统中,从而能够轻松、高效地监测任何分子的纯化过程。