Suppr超能文献

多组分膜相分离动力学中的“熵阱”使纳米域得以稳定。

"Entropic traps" in the kinetics of phase separation in multicomponent membranes stabilize nanodomains.

作者信息

Frolov V A J, Chizmadzhev Y A, Cohen F S, Zimmerberg J

机构信息

Frumkin Institute of Electrochemistry, Russian Academy of Sciences, Moscow, Russia.

出版信息

Biophys J. 2006 Jul 1;91(1):189-205. doi: 10.1529/biophysj.105.068502. Epub 2006 Apr 14.

Abstract

We quantitatively describe the creation and evolution of phase-separated domains in a multicomponent lipid bilayer membrane. The early stages, termed the nucleation stage and the independent growth stage, are extremely rapid (characteristic times are submillisecond and millisecond, respectively) and the system consists of nanodomains of average radius approximately 5-50 nm. Next, mobility of domains becomes consequential; domain merger and fission become the dominant mechanisms of matter exchange, and line tension gamma is the main determinant of the domain size distribution at any point in time. For sufficiently small gamma, the decrease in the entropy term that results from domain merger is larger than the decrease in boundary energy, and only nanodomains are present. For large gamma, the decrease in boundary energy dominates the unfavorable entropy of merger, and merger leads to rapid enlargement of nanodomains to radii of micrometer scale. At intermediate line tensions and within finite times, nanodomains can remain dispersed and coexist with a new global phase. The theoretical critical value of line tension needed to rapidly form large rafts is in accord with the experimental estimate from the curvatures of budding domains in giant unilamellar vesicles.

摘要

我们定量描述了多组分脂质双层膜中相分离域的形成和演化。早期阶段,称为成核阶段和独立生长阶段,极其迅速(特征时间分别为亚毫秒和毫秒),系统由平均半径约为5 - 50 nm的纳米域组成。接下来,域的流动性变得至关重要;域的合并和裂变成为物质交换的主要机制,线张力γ是任何时刻域尺寸分布的主要决定因素。对于足够小的γ,域合并导致的熵项减少大于边界能的减少,此时仅存在纳米域。对于大的γ,边界能的减少主导了不利的合并熵,合并导致纳米域迅速扩大到微米尺度的半径。在中等线张力和有限时间内,纳米域可以保持分散并与新的全局相共存。快速形成大筏所需的线张力理论临界值与来自巨型单层囊泡中出芽域曲率的实验估计值一致。

相似文献

1
"Entropic traps" in the kinetics of phase separation in multicomponent membranes stabilize nanodomains.
Biophys J. 2006 Jul 1;91(1):189-205. doi: 10.1529/biophysj.105.068502. Epub 2006 Apr 14.
2
Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.
Biophys J. 2005 Feb;88(2):1120-33. doi: 10.1529/biophysj.104.048223. Epub 2004 Nov 12.
3
Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air.
Biophys J. 2007 Apr 15;92(8):2842-53. doi: 10.1529/biophysj.106.088419. Epub 2007 Jan 19.
4
Actively maintained lipid nanodomains in biomembranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021907. doi: 10.1103/PhysRevE.77.021907. Epub 2008 Feb 11.
5
Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide.
Biophys J. 2008 Apr 1;94(7):2691-7. doi: 10.1529/biophysj.107.122572. Epub 2007 Dec 7.
6
Effective creases and contact angles between membrane domains with high spontaneous curvature.
Eur Phys J E Soft Matter. 2006 Sep;21(1):11-7. doi: 10.1140/epje/i2006-10039-7. Epub 2006 Sep 28.
7
Anomalously slow domain growth in fluid membranes with asymmetric transbilayer lipid distribution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):040901. doi: 10.1103/PhysRevE.73.040901. Epub 2006 Apr 10.
8
Growth kinetics of circular liquid domains on vesicles by diffusion-controlled coalescence.
J Phys Condens Matter. 2013 May 15;25(19):195105. doi: 10.1088/0953-8984/25/19/195105. Epub 2013 Apr 19.
9
Investigation of Nanoscopic Phase Separations in Lipid Membranes Using Inverse FCS.
Biophys J. 2017 Jun 6;112(11):2367-2376. doi: 10.1016/j.bpj.2017.04.013.
10
Dynamics and size of cross-linking-induced lipid nanodomains in model membranes.
Biophys J. 2012 May 2;102(9):2104-13. doi: 10.1016/j.bpj.2012.03.054.

引用本文的文献

1
High-Speed Atomic Force Microscopy Reveals the Dynamic Interplay of Membrane Proteins is Lipid-Modulated.
Small Sci. 2025 Jul 8;5(9):2500258. doi: 10.1002/smsc.202500258. eCollection 2025 Sep.
2
Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells.
Methods Enzymol. 2024;700:77-104. doi: 10.1016/bs.mie.2024.02.015. Epub 2024 Mar 22.
4
Investigation of nano- and microdomains formed by ceramide 1 phosphate in lipid bilayers.
Sci Rep. 2023 Oct 30;13(1):18570. doi: 10.1038/s41598-023-45575-5.
5
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains.
Biophys J. 2023 Jun 6;122(11):2325-2341. doi: 10.1016/j.bpj.2023.02.029. Epub 2023 Mar 3.
6
Membrane-mediated protein interactions drive membrane protein organization.
Nat Commun. 2022 Nov 30;13(1):7373. doi: 10.1038/s41467-022-35202-8.
7
Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids.
J Phys Chem B. 2022 Aug 11;126(31):5842-5854. doi: 10.1021/acs.jpcb.2c02862. Epub 2022 Jul 27.
8
Determinants of Lipid Domain Size.
Int J Mol Sci. 2022 Mar 23;23(7):3502. doi: 10.3390/ijms23073502.
9
Amphipathic Peptides Impede Lipid Domain Fusion in Phase-Separated Membranes.
Membranes (Basel). 2021 Oct 20;11(11):797. doi: 10.3390/membranes11110797.
10
Dynamic Effects in Nucleation of Receptor Clusters.
Entropy (Basel). 2021 Sep 24;23(10):1245. doi: 10.3390/e23101245.

本文引用的文献

2
Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.
Biophys J. 2005 Feb;88(2):1120-33. doi: 10.1529/biophysj.104.048223. Epub 2004 Nov 12.
3
Dynamics of putative raft-associated proteins at the cell surface.
J Cell Biol. 2004 Jun 7;165(5):735-46. doi: 10.1083/jcb.200312170. Epub 2004 Jun 1.
4
Liquid domains in vesicles investigated by NMR and fluorescence microscopy.
Biophys J. 2004 May;86(5):2910-22. doi: 10.1016/S0006-3495(04)74342-8.
5
Lipid lateral diffusion in ordered and disordered phases in raft mixtures.
Biophys J. 2004 Feb;86(2):891-6. doi: 10.1016/S0006-3495(04)74164-8.
6
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
Nature. 2003 Oct 23;425(6960):821-4. doi: 10.1038/nature02013.
8
Organization in lipid membranes containing cholesterol.
Phys Rev Lett. 2002 Dec 23;89(26):268101. doi: 10.1103/PhysRevLett.89.268101. Epub 2002 Dec 9.
9
Insights into lipid raft structure and formation from experiments in model membranes.
Curr Opin Struct Biol. 2002 Aug;12(4):480-6. doi: 10.1016/s0959-440x(02)00351-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验