Suppr超能文献

根据脂质展布和倾斜计算的膜筏的线张力和相互作用能。

Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.

作者信息

Kuzmin Peter I, Akimov Sergey A, Chizmadzhev Yuri A, Zimmerberg Joshua, Cohen Fredric S

机构信息

Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Biophys J. 2005 Feb;88(2):1120-33. doi: 10.1529/biophysj.104.048223. Epub 2004 Nov 12.

Abstract

Membrane domains known as rafts are rich in cholesterol and sphingolipids, and are thought to be thicker than the surrounding membrane. If so, monolayers should elastically deform so as to avoid exposure of hydrophobic surfaces to water at the raft boundary. We calculated the energy of splay and tilt deformations necessary to avoid such hydrophobic exposure. The derived value of energy per unit length, the line tension gamma, depends on the elastic moduli of the raft and the surrounding membrane; it increases quadratically with the initial difference in thickness between the raft and surround; and it is reduced by differences, either positive or negative, in spontaneous curvature between the two. For zero spontaneous curvature, gamma is approximately 1 pN for a monolayer height mismatch of approximately 0.3 nm, in agreement with experimental measurement. Our model reveals conditions that could prevent rafts from forming, and a mechanism that can cause rafts to remain small. Prevention of raft formation is based on our finding that the calculated line tension is negative if the difference in spontaneous curvature for a raft and the surround is sufficiently large: rafts cannot form if gamma < 0 unless molecular interactions (ignored in the model) are strong enough to make the total line tension positive. Control of size is based on our finding that the height profile from raft to surround does not decrease monotonically, but rather exhibits a damped, oscillatory behavior. As an important consequence, the calculated energy of interaction between rafts also oscillates as it decreases with distance of separation, creating energy barriers between closely apposed rafts. The height of the primary barrier is a complex function of the spontaneous curvatures of the raft and the surround. This barrier can kinetically stabilize the rafts against merger. Our physical theory thus quantifies conditions that allow rafts to form, and further, defines the parameters that control raft merger.

摘要

被称为筏区的膜结构域富含胆固醇和鞘脂,并且被认为比周围的膜更厚。如果是这样,单分子层应该会发生弹性变形,以避免在筏区边界处疏水表面暴露于水中。我们计算了避免这种疏水暴露所需的张开和倾斜变形能量。推导出的每单位长度的能量值,即线张力γ,取决于筏区和周围膜的弹性模量;它随着筏区与周围区域初始厚度差异的平方而增加;并且它会因两者之间自发曲率的正负差异而减小。对于零自发曲率,当单分子层高度失配约为0.3纳米时,γ约为1皮牛,这与实验测量结果一致。我们的模型揭示了可能阻止筏区形成的条件,以及一种可导致筏区保持较小尺寸的机制。阻止筏区形成是基于我们的发现:如果筏区和周围区域的自发曲率差异足够大,计算出的线张力为负;如果γ < 0,除非分子间相互作用(模型中忽略)足够强以使总线张力为正,否则筏区无法形成。尺寸控制基于我们的发现:从筏区到周围区域的高度分布并非单调下降,而是呈现出一种衰减的振荡行为。一个重要的结果是,计算出的筏区之间的相互作用能量也会随着它们之间分离距离的减小而振荡,在紧密相邻的筏区之间形成能量障碍。主要障碍的高度是筏区和周围区域自发曲率的复杂函数。这种障碍可以从动力学上稳定筏区以防止合并。因此,我们的物理理论量化了允许筏区形成的条件,并且进一步定义了控制筏区合并的参数。

相似文献

1
Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.
Biophys J. 2005 Feb;88(2):1120-33. doi: 10.1529/biophysj.104.048223. Epub 2004 Nov 12.
2
Lateral tension increases the line tension between two domains in a lipid bilayer membrane.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 1):011919. doi: 10.1103/PhysRevE.75.011919. Epub 2007 Jan 18.
3
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4476-81. doi: 10.1073/pnas.1221075110. Epub 2013 Mar 4.
4
Domain formation in membranes caused by lipid wetting of protein.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051901. doi: 10.1103/PhysRevE.77.051901. Epub 2008 May 1.
5
Effective creases and contact angles between membrane domains with high spontaneous curvature.
Eur Phys J E Soft Matter. 2006 Sep;21(1):11-7. doi: 10.1140/epje/i2006-10039-7. Epub 2006 Sep 28.
6
"Entropic traps" in the kinetics of phase separation in multicomponent membranes stabilize nanodomains.
Biophys J. 2006 Jul 1;91(1):189-205. doi: 10.1529/biophysj.105.068502. Epub 2006 Apr 14.
7
The state of lipid rafts: from model membranes to cells.
Annu Rev Biophys Biomol Struct. 2003;32:257-83. doi: 10.1146/annurev.biophys.32.110601.142439. Epub 2003 Jan 16.
8
Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide.
Biophys J. 2008 Apr 1;94(7):2691-7. doi: 10.1529/biophysj.107.122572. Epub 2007 Dec 7.
9
Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models.
Biophys J. 2007 Jun 15;92(12):4145-56. doi: 10.1529/biophysj.106.090233. Epub 2007 Mar 23.
10
Raft composition at physiological temperature and pH in the absence of detergents.
Biophys J. 2008 Apr 1;94(7):2654-66. doi: 10.1529/biophysj.107.118596. Epub 2007 Nov 9.

引用本文的文献

1
High-Speed Atomic Force Microscopy Reveals the Dynamic Interplay of Membrane Proteins is Lipid-Modulated.
Small Sci. 2025 Jul 8;5(9):2500258. doi: 10.1002/smsc.202500258. eCollection 2025 Sep.
2
Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons.
Small Sci. 2024 Sep 17;4(11):2400280. doi: 10.1002/smsc.202400280. eCollection 2024 Nov.
3
2Danalysis: A toolbox for analysis of lipid membranes and biopolymers in two-dimensional space.
bioRxiv. 2025 Mar 2:2025.02.27.640563. doi: 10.1101/2025.02.27.640563.
4
Toxic Effects of Butanol in the Plane of the Cell Membrane.
Langmuir. 2025 Jan 21;41(2):1281-1296. doi: 10.1021/acs.langmuir.4c03677. Epub 2025 Jan 8.
6
Probing Gag-Env dynamics at HIV-1 assembly sites using live-cell microscopy.
J Virol. 2024 Sep 17;98(9):e0064924. doi: 10.1128/jvi.00649-24. Epub 2024 Aug 13.
7
Dynamical modelling of lipid droplet formation suggests a key function of membrane phospholipids.
FEBS J. 2025 Jan;292(1):206-225. doi: 10.1111/febs.17238. Epub 2024 Aug 12.
8
Synthesis, insertion, and characterization of SARS-CoV-2 membrane protein within lipid bilayers.
Sci Adv. 2024 Mar;10(9):eadm7030. doi: 10.1126/sciadv.adm7030. Epub 2024 Feb 28.
10
Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization.
Nat Commun. 2023 Oct 18;14(1):6595. doi: 10.1038/s41467-023-42363-7.

本文引用的文献

1
3
Model systems, lipid rafts, and cell membranes.
Annu Rev Biophys Biomol Struct. 2004;33:269-95. doi: 10.1146/annurev.biophys.32.110601.141803.
4
Lipid raft domains and protein networks in T-cell receptor signal transduction.
Curr Opin Immunol. 2004 Jun;16(3):353-9. doi: 10.1016/j.coi.2004.03.013.
5
Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
Biophys J. 2004 May;86(5):2965-79. doi: 10.1016/S0006-3495(04)74347-7.
6
Liquid domains in vesicles investigated by NMR and fluorescence microscopy.
Biophys J. 2004 May;86(5):2910-22. doi: 10.1016/S0006-3495(04)74342-8.
7
Nanoscale organization of multiple GPI-anchored proteins in living cell membranes.
Cell. 2004 Feb 20;116(4):577-89. doi: 10.1016/s0092-8674(04)00167-9.
8
Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension.
Nature. 2003 Oct 23;425(6960):821-4. doi: 10.1038/nature02013.
9
Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
Biophys J. 2003 Mar;84(3):1827-32. doi: 10.1016/s0006-3495(03)74990-x.
10
Direct visualization of Ras proteins in spatially distinct cell surface microdomains.
J Cell Biol. 2003 Jan 20;160(2):165-70. doi: 10.1083/jcb.200209091. Epub 2003 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验