Suppr超能文献

量化柔性生物分子识别的动力学路径。

Quantifying the kinetic paths of flexible biomolecular recognition.

作者信息

Wang Jin, Zhang Kun, Lu Hongyang, Wang Erkang

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.

出版信息

Biophys J. 2006 Aug 1;91(3):866-72. doi: 10.1529/biophysj.105.074716. Epub 2006 Apr 14.

Abstract

Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.

摘要

生物分子识别通常涉及大的构象变化,有时甚至是局部解折叠。确定动力学途径已成为理解结合本质的核心问题。本文提出一种新方法,通过在潜在能量景观上建立路径积分框架来研究这种结合-折叠过程的动力学。可以确定并量化结合和折叠的主导动力学途径。生物分子的结合与折叠之间的显著耦合在许多重要的细胞过程中经常存在。在这种情况下,相应的结合动力学途径显示出与折叠途径密切相关,并且动力学变得相当协同。这意味着结合和折叠同时发生。当结合与折叠之间的耦合较弱(较强)时,动力学过程通常首先从显著的折叠(结合)开始,随后结合(折叠)进行到底。动力学速率可以通过主导途径的贡献获得。在浓度饱和状态下,该速率显示出对温度呈钟形依赖,这与实验结果一致。研究了改变潜在结合-折叠能量景观参数时发生的动力学变化。

相似文献

1
Quantifying the kinetic paths of flexible biomolecular recognition.
Biophys J. 2006 Aug 1;91(3):866-72. doi: 10.1529/biophysj.105.074716. Epub 2006 Apr 14.
2
Dominant kinetic paths on biomolecular binding-folding energy landscape.
Phys Rev Lett. 2006 Apr 28;96(16):168101. doi: 10.1103/PhysRevLett.96.168101.
3
Quantifying kinetic paths of protein folding.
Biophys J. 2005 Sep;89(3):1612-20. doi: 10.1529/biophysj.104.055186. Epub 2005 Jul 1.
4
Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):E2342-51. doi: 10.1073/pnas.1220699110. Epub 2013 Jun 10.
5
Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.
PLoS Comput Biol. 2014 Aug 21;10(8):e1003782. doi: 10.1371/journal.pcbi.1003782. eCollection 2014 Aug.
6
Transition paths, diffusive processes, and preequilibria of protein folding.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20919-24. doi: 10.1073/pnas.1209891109. Epub 2012 Dec 3.
7
Probing the kinetics of single molecule protein folding.
Biophys J. 2004 Dec;87(6):3633-41. doi: 10.1529/biophysj.104.046243. Epub 2004 Oct 1.
8
Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme.
PLoS Comput Biol. 2011 Apr;7(4):e1001118. doi: 10.1371/journal.pcbi.1001118. Epub 2011 Apr 7.
9
Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins.
Biochem Biophys Res Commun. 2006 Feb 17;340(3):976-83. doi: 10.1016/j.bbrc.2005.12.093. Epub 2005 Dec 27.

引用本文的文献

1
Chasing funnels on protein-protein energy landscapes at different resolutions.
Biophys J. 2008 Sep;95(5):2150-9. doi: 10.1529/biophysj.108.132977. Epub 2008 May 30.

本文引用的文献

1
Application of a Theory of Enzyme Specificity to Protein Synthesis.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):98-104. doi: 10.1073/pnas.44.2.98.
2
A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes.
J Mol Biol. 2005 Mar 4;346(4):1121-45. doi: 10.1016/j.jmb.2004.12.021. Epub 2005 Jan 26.
3
Protein topology determines binding mechanism.
Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):511-6. doi: 10.1073/pnas.2534828100. Epub 2003 Dec 23.
4
Diffusion dynamics, moments, and distribution of first-passage time on the protein-folding energy landscape, with applications to single molecules.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 1):041905. doi: 10.1103/PhysRevE.67.041905. Epub 2003 Apr 17.
5
Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding.
Phys Rev Lett. 2003 May 9;90(18):188101. doi: 10.1103/PhysRevLett.90.188101. Epub 2003 May 6.
7
The unfolding story of three-dimensional domain swapping.
Structure. 2003 Mar;11(3):243-51. doi: 10.1016/s0969-2126(03)00029-7.
8
The physics and bioinformatics of binding and folding-an energy landscape perspective.
Biopolymers. 2003 Mar;68(3):333-49. doi: 10.1002/bip.10286.
9
Physical constraints and functional characteristics of transcription factor-DNA interaction.
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12015-20. doi: 10.1073/pnas.192693599. Epub 2002 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验