Suppr超能文献

通过pH时间进程计算以及pH依赖的反应平衡和酶动力学对肌肉糖原分解动力学进行建模。

Dynamics of muscle glycogenolysis modeled with pH time course computation and pH-dependent reaction equilibria and enzyme kinetics.

作者信息

Vinnakota Kalyan, Kemp Melissa L, Kushmerick Martin J

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington, USA.

出版信息

Biophys J. 2006 Aug 15;91(4):1264-87. doi: 10.1529/biophysj.105.073296. Epub 2006 Apr 14.

Abstract

Cellular metabolites are moieties defined by their specific binding constants to H+, Mg2+, and K+ or anions without ligands. As a consequence, every biochemical reaction in the cytoplasm has an associated proton stoichiometry that is generally noninteger- and pH-dependent. Therefore, with metabolic flux, pH is altered in a medium with finite buffer capacity. Apparent equilibrium constants and maximum enzyme velocities, which are functions of pH, are also altered. We augmented an earlier mathematical model of skeletal muscle glycogenolysis with pH-dependent enzyme kinetics and reaction equilibria to compute the time course of pH changes. Analysis shows that kinetics and final equilibrium states of the closed system are highly constrained by the pH-dependent parameters. This kinetic model of glycogenolysis, coupled to creatine kinase and adenylate kinase, simulated published experiments made with a cell-free enzyme mixture to reconstitute the network and to synthesize PCr and lactate in vitro. Using the enzyme kinetic and thermodynamic data in the literature, the simulations required minimal adjustments of parameters to describe the data. These results show that incorporation of appropriate physical chemistry of the reactions with accurate kinetic modeling gives a reasonable simulation of experimental data and is necessary for a physically correct representation of the metabolic network. The approach is general for modeling metabolic networks beyond the specific pathway and conditions presented here.

摘要

细胞代谢物是由其与H⁺、Mg²⁺、K⁺或无配体阴离子的特定结合常数所定义的部分。因此,细胞质中的每一个生化反应都有一个相关的质子化学计量,其通常是非整数且依赖于pH值的。所以,随着代谢通量的变化,在具有有限缓冲能力的介质中pH值会发生改变。表观平衡常数和最大酶速度作为pH值的函数,也会发生改变。我们用依赖于pH值的酶动力学和反应平衡增强了早期骨骼肌糖原分解的数学模型,以计算pH值变化的时间进程。分析表明,封闭系统的动力学和最终平衡状态受到依赖于pH值参数的高度限制。这个糖原分解的动力学模型,与肌酸激酶和腺苷酸激酶相耦合,模拟了用无细胞酶混合物进行的已发表实验,以在体外重建网络并合成磷酸肌酸和乳酸。利用文献中的酶动力学和热力学数据,模拟只需对参数进行最小调整就能描述数据。这些结果表明,将反应的适当物理化学与精确的动力学建模相结合,能够合理地模拟实验数据,并且对于代谢网络的物理正确表示是必要的。这种方法对于在此处呈现的特定途径和条件之外的代谢网络建模是通用的。

相似文献

1
Dynamics of muscle glycogenolysis modeled with pH time course computation and pH-dependent reaction equilibria and enzyme kinetics.
Biophys J. 2006 Aug 15;91(4):1264-87. doi: 10.1529/biophysj.105.073296. Epub 2006 Apr 14.
2
Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes.
Mol Biol Rep. 2002;29(1-2):135-9. doi: 10.1023/a:1020305208137.
4
Temperature and pH dependence of energy balance by (31)P- and (1)H-MRS in anaerobic frog muscle.
Biochim Biophys Acta. 2004 Feb 15;1608(2-3):163-70. doi: 10.1016/j.bbabio.2003.11.007.
5
Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
Bioinformatics. 2005 Sep 1;21(17):3558-64. doi: 10.1093/bioinformatics/bti573. Epub 2005 Jul 7.
6
Lactic acid accumulation is an advantage/disadvantage during muscle activity.
J Appl Physiol (1985). 2006 Jun;100(6):2100. doi: 10.1152/japplphysiol.00213.2006.
7
A computational model for glycogenolysis in skeletal muscle.
Ann Biomed Eng. 2002 Jun;30(6):808-27. doi: 10.1114/1.1492813.
9
Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.
Metab Eng. 2003 Jul;5(3):164-76. doi: 10.1016/s1096-7176(03)00025-9.
10
Modelling of energy metabolism and analysis of pH variations in postmortem muscle.
Meat Sci. 2021 Dec;182:108634. doi: 10.1016/j.meatsci.2021.108634. Epub 2021 Jul 15.

引用本文的文献

1
The missing hydrogen ion, part-2: Where the evidence leads to.
Sports Med Health Sci. 2024 Jan 15;6(1):94-100. doi: 10.1016/j.smhs.2024.01.001. eCollection 2024 Mar.
2
The missing hydrogen ion, part-1: Historical precedents vs. fundamental concepts.
Sports Med Health Sci. 2023 Nov 10;5(4):336-343. doi: 10.1016/j.smhs.2023.10.008. eCollection 2023 Dec.
4
pH dependencies of glycolytic enzymes of yeast under in vivo-like assay conditions.
FEBS J. 2022 Oct;289(19):6021-6037. doi: 10.1111/febs.16459. Epub 2022 May 11.
5
Kinetic Modeling of Central Carbon Metabolism: Achievements, Limitations, and Opportunities.
Metabolites. 2022 Jan 13;12(1):74. doi: 10.3390/metabo12010074.
7
Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture.
PLoS One. 2018 Nov 29;13(11):e0207803. doi: 10.1371/journal.pone.0207803. eCollection 2018.
8
Modelling postmortem evolution of pH in beef M. under two different cooling regimes.
J Food Sci Technol. 2018 Jan;55(1):233-243. doi: 10.1007/s13197-017-2925-9. Epub 2017 Oct 31.

本文引用的文献

1
The isolation and properties of phosphoglucomutase.
J Biol Chem. 1948 Aug;175(1):281-90.
2
Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism.
Am J Physiol Endocrinol Metab. 2005 Mar;288(3):E633-44. doi: 10.1152/ajpendo.00239.2004. Epub 2004 Oct 26.
3
Biochemistry of exercise-induced metabolic acidosis.
Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16. doi: 10.1152/ajpregu.00114.2004.
4
Thermodynamic constraints for biochemical networks.
J Theor Biol. 2004 Jun 7;228(3):327-33. doi: 10.1016/j.jtbi.2004.01.008.
5
A short history of the thermodynamics of enzyme-catalyzed reactions.
J Biol Chem. 2004 Jul 2;279(27):27831-6. doi: 10.1074/jbc.X400003200. Epub 2004 Apr 8.
8
Hydrogen ion effects in high-energy phosphate reactions.
Proc Natl Acad Sci U S A. 1961 Aug;47(8):1094-108. doi: 10.1073/pnas.47.8.1094.
9
The "high energy phosphate bond" concept.
Prog Biophys Mol Biol. 1960;10:1-53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验