Suppr超能文献

利用海洋双壳类动物评估化石记录的保真度。

Assessing the fidelity of the fossil record by using marine bivalves.

作者信息

Valentine James W, Jablonski David, Kidwell Susan, Roy Kaustuv

机构信息

Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6599-604. doi: 10.1073/pnas.0601264103. Epub 2006 Apr 14.

Abstract

Taxa that fail to become incorporated into the fossil record can reveal much about the biases of this record and provide the information needed to correct such biases in empirical analyses of the history of life. Yet little is known about the characteristics of taxa missing from the fossil record. For the marine Bivalvia, which have become a model system for macroevolutionary and macroecological analysis in the fossil record, 308 of the 1,292 living genera and subgenera (herein termed "taxa") are not recorded as fossils. These missing taxa are not a random sample of the clade, but instead tend to have small body size, reactive shell structures, commensal or parasitic habit, deep-sea distribution, narrow geographic range, restriction to regions exposing few Neogene marine sediments, or recent date of formal taxonomic description in the neontological literature. Most missing taxa show two or more of these features and tend to be concentrated in particular families. When we exclude the smallest taxa (<1 cm) and deep-sea endemics, date of published description and geographic range become the strongest predictors of the missing taxa; other factors are statistically insignificant or have relatively small effects. These biases might influence a variety of analyses including the use of fossil data in support of phylogenetic analyses, molecular clock calibrations, and analyses of spatial and temporal dynamics of clades and biotas. Clade inventories such as these can be used to develop protocols that minimize the biases imposed by sampling and preservation.

摘要

未能被纳入化石记录的分类群可以揭示出该记录的诸多偏差,并提供在对生命历史进行实证分析时纠正此类偏差所需的信息。然而,对于化石记录中缺失的分类群的特征,我们却知之甚少。对于海洋双壳纲动物而言,它们已成为化石记录中宏观进化和宏观生态分析的一个模型系统,在1292个现存属和亚属(在此称为“分类群”)中,有308个未被记录为化石。这些缺失的分类群并非该分支的随机样本,而是往往具有体型小、贝壳结构易反应、共生或寄生习性、深海分布、地理范围狭窄、局限于新近纪海洋沉积物暴露较少的区域,或者在新生物文献中正式分类描述的时间较近等特征。大多数缺失的分类群表现出这些特征中的两种或更多种,并且往往集中在特定的科中。当我们排除最小的分类群(<1厘米)和深海特有种时,已发表描述的时间和地理范围就成为缺失分类群的最强预测因素;其他因素在统计上不显著或影响相对较小。这些偏差可能会影响各种分析,包括利用化石数据支持系统发育分析、分子钟校准以及对分支和生物群的时空动态分析。这样的分支清单可用于制定方案,以尽量减少采样和保存所带来的偏差。

相似文献

1
Assessing the fidelity of the fossil record by using marine bivalves.利用海洋双壳类动物评估化石记录的保真度。
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6599-604. doi: 10.1073/pnas.0601264103. Epub 2006 Apr 14.
3
Geologic constraints on the macroevolutionary history of marine animals.海洋动物宏观进化历史的地质限制因素。
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12326-31. doi: 10.1073/pnas.0502616102. Epub 2005 Aug 16.
7
The Paleogene fossil record of birds in Europe.欧洲古近纪鸟类化石记录。
Biol Rev Camb Philos Soc. 2005 Nov;80(4):515-42. doi: 10.1017/S1464793105006779.

引用本文的文献

3
Towards quantifying the mass extinction debt of the Anthropocene.迈向量化人类世的物种灭绝债务
Proc Biol Sci. 2021 Apr 28;288(1949):20202332. doi: 10.1098/rspb.2020.2332.
6
Probabilistic models of species discovery and biodiversity comparisons.物种发现和生物多样性比较的概率模型。
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3666-3671. doi: 10.1073/pnas.1616355114. Epub 2017 Mar 21.
10
Spatial bias in the marine fossil record.海洋化石记录中的空间偏倚。
PLoS One. 2013 Oct 30;8(10):e74470. doi: 10.1371/journal.pone.0074470. eCollection 2013.

本文引用的文献

2
Estimating metazoan divergence times with a molecular clock.用分子钟估计后生动物的分化时间。
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6536-41. doi: 10.1073/pnas.0401670101. Epub 2004 Apr 14.
3
Estimating the rock volume bias in paleobiodiversity studies.估算古生物多样性研究中的岩石体积偏差。
Science. 2003 Jul 18;301(5631):358-60. doi: 10.1126/science.1085075. Epub 2003 Jun 12.
5
Protobranch bivalves.原鳃双壳类动物。
Adv Mar Biol. 2002;42:1-65. doi: 10.1016/s0065-2881(02)42012-3.
6
Paleoecology. Measuring past biodiversity.古生态学。测量过去的生物多样性。
Science. 2001 Sep 28;293(5539):2401-4. doi: 10.1126/science.1063789.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验