Suppr超能文献

走出热带地区,但如何做到呢?化石、过渡物种和热范围在海洋纬度多样性梯度的动态变化中。

Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient.

机构信息

Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10487-94. doi: 10.1073/pnas.1308997110. Epub 2013 Jun 12.

Abstract

Latitudinal diversity gradients are underlain by complex combinations of origination, extinction, and shifts in geographic distribution and therefore are best analyzed by integrating paleontological and neontological data. The fossil record of marine bivalves shows, in three successive late Cenozoic time slices, that most clades (operationally here, genera) tend to originate in the tropics and then expand out of the tropics (OTT) to higher latitudes while retaining their tropical presence. This OTT pattern is robust both to assumptions on the preservation potential of taxa and to taxonomic revisions of extant and fossil species. Range expansion of clades may occur via "bridge species," which violate climate-niche conservatism to bridge the tropical-temperate boundary in most OTT genera. Substantial time lags (∼5 Myr) between the origins of tropical clades and their entry into the temperate zone suggest that OTT events are rare on a per-clade basis. Clades with higher diversification rates within the tropics are the most likely to expand OTT and the most likely to produce multiple bridge species, suggesting that high speciation rates promote the OTT dynamic. Although expansion of thermal tolerances is key to the OTT dynamic, most latitudinally widespread species instead achieve their broad ranges by tracking widespread, spatially-uniform temperatures within the tropics (yielding, via the nonlinear relation between temperature and latitude, a pattern opposite to Rapoport's rule). This decoupling of range size and temperature tolerance may also explain the differing roles of species and clade ranges in buffering species from background and mass extinctions.

摘要

纬度多样性梯度是由起源、灭绝和地理分布变化的复杂组合所决定的,因此最好通过整合古生物学和现代生物学数据来进行分析。海洋双壳类动物的化石记录显示,在连续的三个晚新生代时间切片中,大多数进化枝(在这里,操作上是指属)往往起源于热带,然后从热带(OTT)扩张到高纬度地区,同时保留其在热带的存在。这种 OTT 模式对于分类群的保存潜力假设和现存及化石物种的分类修订都是稳健的。进化枝的分布范围扩张可能是通过“桥接物种”来实现的,这些物种违反了气候-生态位保守性,在大多数 OTT 属中跨越热带-温带边界。热带进化枝起源和进入温带之间存在大量的时间滞后(约 500 万年),这表明 OTT 事件在每个进化枝的基础上都很少发生。在热带地区具有较高多样化率的进化枝最有可能进行 OTT 扩张,并且最有可能产生多个桥接物种,这表明高物种形成率促进了 OTT 动态。尽管扩展热耐受性是 OTT 动态的关键,但大多数纬度广泛分布的物种通过在热带地区追踪广泛、空间均匀的温度来实现其广泛的分布(由于温度和纬度之间的非线性关系,产生了与拉波波特法则相反的模式)。这种范围大小和温度耐受性的解耦也可能解释了物种和进化枝范围在缓冲物种免受背景和大规模灭绝方面的不同作用。

相似文献

1
Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10487-94. doi: 10.1073/pnas.1308997110. Epub 2013 Jun 12.
2
Unifying latitudinal gradients in range size and richness across marine and terrestrial systems.
Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2015.3027.
3
Convergence, divergence, and parallelism in marine biodiversity trends: Integrating present-day and fossil data.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4903-8. doi: 10.1073/pnas.1412219112.
4
Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient.
Science. 2006 Oct 6;314(5796):102-6. doi: 10.1126/science.1130880.
5
Signature of the end-Cretaceous mass extinction in the modern biota.
Science. 2009 Feb 6;323(5915):767-71. doi: 10.1126/science.1164905.
6
Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton.
Proc Biol Sci. 2021 May 12;288(1950):20210545. doi: 10.1098/rspb.2021.0545.
7
Macroecology and macroevolution of the latitudinal diversity gradient in ants.
Nat Commun. 2018 May 3;9(1):1778. doi: 10.1038/s41467-018-04218-4.
8
Faster speciation and reduced extinction in the tropics contribute to the Mammalian latitudinal diversity gradient.
PLoS Biol. 2014 Jan 28;12(1):e1001775. doi: 10.1371/journal.pbio.1001775. eCollection 2014 Jan.
9
Species-genus ratios reflect a global history of diversification and range expansion in marine bivalves.
Proc Biol Sci. 2008 May 22;275(1639):1117-23. doi: 10.1098/rspb.2007.1729.
10
Origination and immigration drive latitudinal gradients in marine functional diversity.
PLoS One. 2014 Jul 18;9(7):e101494. doi: 10.1371/journal.pone.0101494. eCollection 2014.

引用本文的文献

1
A hundred species, mostly new-first assessment of ribbon worm diversity and distribution in Oman.
PeerJ. 2025 May 28;13:e19438. doi: 10.7717/peerj.19438. eCollection 2025.
3
Warmer is better for evolutionary rescue, driving a warm-to-cold bias in habitat colonization dynamics.
Proc Biol Sci. 2024 Oct;291(2032):20241605. doi: 10.1098/RSPB.2024.1605. Epub 2024 Oct 2.
4
Predicting the fundamental thermal niche of ectotherms.
Ecology. 2024 May;105(5):e4289. doi: 10.1002/ecy.4289. Epub 2024 Apr 5.
5
Biogeographical patterns of species richness in stream diatoms from southwestern South America.
Ecol Evol. 2024 Mar 20;14(3):e11156. doi: 10.1002/ece3.11156. eCollection 2024 Mar.
6
The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education.
Ecol Evol. 2023 Oct 23;13(10):e10621. doi: 10.1002/ece3.10621. eCollection 2023 Oct.
7
Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves.
Nat Commun. 2023 Aug 15;14(1):4639. doi: 10.1038/s41467-023-40053-y.
9
A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity.
Nat Plants. 2023 Apr;9(4):544-553. doi: 10.1038/s41477-023-01369-1. Epub 2023 Mar 9.
10
A latitudinal gradient of deep-sea invasions for marine fishes.
Nat Commun. 2023 Feb 11;14(1):773. doi: 10.1038/s41467-023-36501-4.

本文引用的文献

1
SYMPATRIC SEA SHELLS ALONG THE SEA'S SHORE: THE GEOGRAPHY OF SPECIATION IN THE MARINE GASTROPOD TEGULA.
Evolution. 1998 Oct;52(5):1311-1324. doi: 10.1111/j.1558-5646.1998.tb02013.x.
2
Global environmental predictors of benthic marine biogeographic structure.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14046-51. doi: 10.1073/pnas.1212381109. Epub 2012 Aug 16.
3
Diversification rates and the latitudinal gradient of diversity in mammals.
Proc Biol Sci. 2012 Oct 22;279(1745):4148-55. doi: 10.1098/rspb.2012.1393. Epub 2012 Aug 15.
4
Determinants of northerly range limits along the Himalayan bird diversity gradient.
Am Nat. 2011 Oct;178 Suppl 1:S97-108. doi: 10.1086/661926. Epub 2011 Aug 23.
5
Direct and indirect effects of biological factors on extinction risk in fossil bivalves.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13594-9. doi: 10.1073/pnas.1100572108. Epub 2011 Aug 1.
6
The great divergence: when did diversity on land exceed that in the sea?
Integr Comp Biol. 2010 Oct;50(4):675-82. doi: 10.1093/icb/icq078. Epub 2010 Jul 2.
7
Anthropogenic impacts on marine ecosystems in Antarctica.
Ann N Y Acad Sci. 2011 Mar;1223:82-107. doi: 10.1111/j.1749-6632.2010.05926.x.
8
Rapoport's rule: time for an epitaph?
Trends Ecol Evol. 1998 Feb 1;13(2):70-4. doi: 10.1016/s0169-5347(97)01236-6.
9
Differential extinction and the contrasting structure of polar marine faunas.
PLoS One. 2010 Dec 22;5(12):e15362. doi: 10.1371/journal.pone.0015362.
10
Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas.
Philos Trans R Soc Lond B Biol Sci. 2010 Nov 27;365(1558):3655-66. doi: 10.1098/rstb.2010.0270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验