Suppr超能文献

停滞的酵母剪接复合体表明体内剪接体组装过程中snRNP的逐步招募。

Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly.

作者信息

Tardiff Daniel F, Rosbash Michael

机构信息

Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA.

出版信息

RNA. 2006 Jun;12(6):968-79. doi: 10.1261/rna.50506. Epub 2006 Apr 17.

Abstract

Pre-mRNA splicing is catalyzed by the spliceosome, a macromolecular machine dedicated to intron removal and exon ligation. Despite an abundance of in vitro information and a small number of in vivo studies, the pathway of yeast (Saccharomyces cerevisiae) in vivo spliceosome assembly remains uncertain. To address this situation, we combined in vivo depletions of U1, U2, or U5 snRNAs with chromatin immunoprecipitation (ChIP) analysis of other splicing snRNPs along an intron-containing gene. The data indicate that snRNP recruitment to nascent pre-mRNA predominantly proceeds via the canonical three-step assembly pathway: first U1, then U2, and finally the U4/U6*U5 tri-snRNP. Tandem affinity purification (TAP) using a U2 snRNP-tagged protein allowed the characterization of in vivo assembled higher-order splicing complexes. Consistent with an independent snRNP assembly pathway, we observed high levels of U1-U2 prespliceosomes under U5-depletion conditions, and we observed significant levels of a U2/U5/U6/Prp19-complex mature splicing complex under wild-type conditions. These complexes have implications for the steady-state distribution of snRNPs within nuclei and also reinforce the stepwise recruitment of U1, U2, and the tri-snRNP during in vivo spliceosome assembly.

摘要

前体mRNA剪接由剪接体催化,剪接体是一种致力于去除内含子和连接外显子的大分子机器。尽管有大量的体外研究信息和少量的体内研究,但酵母(酿酒酵母)体内剪接体组装途径仍不明确。为了解决这一情况,我们将U1、U2或U5 snRNA的体内缺失与沿着一个含内含子基因的其他剪接snRNP的染色质免疫沉淀(ChIP)分析相结合。数据表明,snRNP募集到新生前体mRNA主要通过经典的三步组装途径进行:首先是U1,然后是U2,最后是U4/U6*U5三snRNP。使用带有U2 snRNP标签的蛋白质进行串联亲和纯化(TAP),可以对体内组装的高阶剪接复合物进行表征。与独立的snRNP组装途径一致,我们在U5缺失条件下观察到高水平的U1-U2前剪接体,并且在野生型条件下观察到显著水平的U2/U5/U6/Prp19复合物成熟剪接复合物。这些复合物对snRNP在细胞核内的稳态分布有影响,也加强了体内剪接体组装过程中U1、U2和三snRNP的逐步募集。

相似文献

2
Prespliceosome structure provides insights into spliceosome assembly and regulation.
Nature. 2018 Jul;559(7714):419-422. doi: 10.1038/s41586-018-0323-8. Epub 2018 Jul 11.
5
Interaction of the human autoantigen p150 with splicing snRNPs.
J Cell Sci. 1993 Jul;105 ( Pt 3):685-97. doi: 10.1242/jcs.105.3.685.
6
Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast.
Mol Cell. 2005 Jul 1;19(1):65-75. doi: 10.1016/j.molcel.2005.05.006.
7
Structure of a pre-catalytic spliceosome.
Nature. 2017 Jun 29;546(7660):617-621. doi: 10.1038/nature22799. Epub 2017 May 22.

引用本文的文献

1
Co-transcriptional gene regulation in eukaryotes and prokaryotes.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):534-554. doi: 10.1038/s41580-024-00706-2. Epub 2024 Mar 20.
3
Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles.
Front Mol Biosci. 2022 Sep 20;9:998363. doi: 10.3389/fmolb.2022.998363. eCollection 2022.
4
Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40.
Plant Cell. 2022 Nov 29;34(12):4920-4935. doi: 10.1093/plcell/koac278.
5
6
Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo.
RNA Biol. 2019 Dec;16(12):1775-1784. doi: 10.1080/15476286.2019.1657788. Epub 2019 Sep 4.
7
Nascent RNA and the Coordination of Splicing with Transcription.
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a032227. doi: 10.1101/cshperspect.a032227.
8
Spt5 modulates cotranscriptional spliceosome assembly in .
RNA. 2019 Oct;25(10):1298-1310. doi: 10.1261/rna.070425.119. Epub 2019 Jul 9.
9
Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly.
RNA. 2017 Oct;23(10):1512-1524. doi: 10.1261/rna.061986.117. Epub 2017 Jul 12.
10
The histone variant H2A.Z promotes efficient cotranscriptional splicing in .
Genes Dev. 2017 Apr 1;31(7):702-717. doi: 10.1101/gad.295188.116.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Spliceosome assembly in yeast: one ChIP at a time?
Nat Struct Mol Biol. 2005 Jul;12(7):571-3. doi: 10.1038/nsmb0705-571.
3
Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast.
Mol Cell. 2005 Jul 1;19(1):65-75. doi: 10.1016/j.molcel.2005.05.006.
5
Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing.
EMBO J. 2004 Dec 8;23(24):4847-56. doi: 10.1038/sj.emboj.7600482. Epub 2004 Nov 25.
6
Modified nucleotides at the 5' end of human U2 snRNA are required for spliceosomal E-complex formation.
RNA. 2004 Dec;10(12):1925-33. doi: 10.1261/rna.7186504. Epub 2004 Nov 3.
7
Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes.
EMBO J. 2004 Jul 7;23(13):2620-31. doi: 10.1038/sj.emboj.7600261. Epub 2004 Jun 10.
8
The spliceosome: the most complex macromolecular machine in the cell?
Bioessays. 2003 Dec;25(12):1147-9. doi: 10.1002/bies.10394.
9
Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast.
Mol Cell Biol. 2003 Aug;23(16):5768-79. doi: 10.1128/MCB.23.16.5768-5779.2003.
10
Pre-mRNA splicing: awash in a sea of proteins.
Mol Cell. 2003 Jul;12(1):5-14. doi: 10.1016/s1097-2765(03)00270-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验