Suppr超能文献

微重力环境下合成代谢信号的减少和成骨细胞核形态的改变。

Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity.

作者信息

Hughes-Fulford Millie, Rodenacker Karsten, Jütting Uta

机构信息

Northern California Institute for Research and Education, San Francisco, California, USA.

出版信息

J Cell Biochem. 2006 Oct 1;99(2):435-49. doi: 10.1002/jcb.20883.

Abstract

Bone loss has been repeatedly documented in astronauts after flight, yet little is known about the mechanism of bone loss in space flight. Osteoblasts were activated during space flight in microgravity (microg) with and without a 1 gravity (1 g) field and 24 genes were analyzed for early induction. Induction of proliferating cell nuclear antigen (PCNA), transforming growth factor beta (TGFbeta), cyclo-oxygenase-2 (cox-2), cpla2, osteocalcin (OC), c-myc, fibroblast growth factor-2 (fgf-2), bcl2, bax, and fgf-2 message as well as FGF-2 protein were significantly depressed in microg when compared to ground (gr). Artificial onboard gravity normalized the induction of c-myc, cox-2, TGFbeta, bax, bcl2, and fgf-2 message as well as FGF-2 protein synthesis in spaceflight samples. In normal gravity, FGF-2 induces bcl2 expression; we found that bcl2 expression was significantly reduced in microgravity conditions. Since nuclear shape is known to elongate in the absence of mitogens like FGF-2, we used high-resolution image-based morphometry to characterize changes in osteoblast nuclear architecture under microgravity, 1 g flight, and ground conditions. Besides changes in cell shape (roundish/elliptic), other high-resolution analyses show clear influences of gravity on the inner nuclear structure. These changes occur in the texture, arrangement, and contrast of nuclear particles and mathematical modeling defines the single cell classification of the osteoblasts. Changes in nuclear structure were evident as early as 24 h after exposure to microgravity. This documented alteration in nuclear architecture may be a direct result of decreased expression of autocrine and cell cycle genes, suggesting an inhibition of anabolic response in microg. Life on this planet has evolved in a normal gravity field and these data suggest that gravity plays a significant role in regulation of osteoblast transcription.

摘要

飞行后宇航员出现骨质流失的情况已被多次记录,但关于太空飞行中骨质流失的机制却知之甚少。在有或没有1g重力场的微重力环境下,成骨细胞在太空飞行期间被激活,并对24个基因进行早期诱导分析。与地面相比,微重力环境下增殖细胞核抗原(PCNA)、转化生长因子β(TGFβ)、环氧化酶-2(cox-2)、cpla2、骨钙素(OC)、c-myc、成纤维细胞生长因子-2(fgf-2)、bcl2、bax和fgf-2信息以及FGF-2蛋白的诱导水平显著降低。人工模拟重力使太空飞行样本中c-myc、cox-2、TGFβ、bax、bcl2和fgf-2信息以及FGF-2蛋白合成的诱导水平恢复正常。在正常重力条件下,FGF-2可诱导bcl2表达;我们发现微重力条件下bcl2表达显著降低。由于已知在缺乏FGF-2等有丝分裂原的情况下细胞核形状会拉长,我们使用基于高分辨率图像的形态计量学来表征微重力、1g飞行和地面条件下成骨细胞核结构的变化。除了细胞形状(圆形/椭圆形)的变化外,其他高分辨率分析表明重力对细胞核内部结构有明显影响。这些变化发生在核颗粒的纹理、排列和对比度上,数学建模定义了成骨细胞的单细胞分类。核结构的变化在暴露于微重力环境后24小时就很明显。这种核结构的改变可能是自分泌和细胞周期基因表达降低的直接结果,表明微重力环境下合成代谢反应受到抑制。地球上的生命是在正常重力场中进化的,这些数据表明重力在成骨细胞转录调控中起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验