Suppr超能文献

评估卫星传感器衍生指标用于莱姆病风险预测。

Evaluating satellite sensor-derived indices for Lyme disease risk prediction.

作者信息

Rodgers Sarah E, Mather Thomas N

机构信息

Center for Vector-Borne Disease, University of Rhode Island, Kingston 02881-0804, USA.

出版信息

J Med Entomol. 2006 Mar;43(2):337-43. doi: 10.1603/0022-2585(2006)043[0337:essifl]2.0.co;2.

Abstract

The wetness and greenness indices created using Landsat Thematic Mapper (TM) data from June 1995 and 1997 and July 2002 were tested for their ability to predict the location of sites with different levels of nymphal blacklegged tick, Ixodes scapularis Say, abundance in Rhode Island. In 1995, there were statistically significant differences in the mean of greenness and wetness indices between sites classified as low and moderate tick abundance areas (P = 0.005 and P = 0.041, respectively). In 1997, there also were statistically significant differences in the mean of the greenness and wetness indices, but these differences were between the grouping of low/moderate tick abundance and the high tick abundance category (P = 0.023 and P = 0.015, respectively). The same indices from the 2002 image were not significant predictors of tick abundance. It may be that Landsat TM-derived indices can be used to predict nymphal blacklegged tick abundance in years (e.g., 1995 and 1997) when tick abundance is lower than average but not in years when it is higher (e.g., 2002). Thus, it seems unlikely that these remotely sensed indices will be very useful for modeling nonperidomestic Lyme disease risk over a large region in Rhode Island.

摘要

利用1995年6月、1997年6月和2002年7月的陆地卫星专题制图仪(TM)数据创建的湿度和绿度指数,被用于测试其预测罗德岛不同水平若虫期黑腿蜱(肩突硬蜱,Say)丰度地点的能力。1995年,在被分类为低蜱丰度区域和中等蜱丰度区域的地点之间,绿度指数和湿度指数的平均值存在统计学显著差异(分别为P = 0.005和P = 0.041)。1997年,绿度指数和湿度指数的平均值也存在统计学显著差异,但这些差异存在于低/中等蜱丰度组和高蜱丰度组之间(分别为P = 0.023和P = 0.015)。2002年图像的相同指数并非蜱丰度的显著预测指标。可能是陆地卫星TM衍生指数可用于预测蜱丰度低于平均水平年份(如1995年和1997年)的若虫期黑腿蜱丰度,但不能用于预测蜱丰度高于平均水平的年份(如2002年)。因此,这些遥感指数似乎不太可能对罗德岛广大区域的非家庭莱姆病风险建模非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验