Zhu Guang, Janak Kevin E, Figueroa Joshua S, Parkin Gerard
Department of Chemistry, Columbia University, New York, New York 10027, USA.
J Am Chem Soc. 2006 Apr 26;128(16):5452-61. doi: 10.1021/ja058107f.
In contrast to the benzene and naphthalene compounds (eta(6)-PhH)Mo(PMe(3))(3) and (eta(6)-NpH)Mo(PMe(3))(3), the anthracene complex (eta(6)-AnH)Mo(PMe(3))(3) reacts with H(2) to undergo a haptotropic shift and give the eta(4)-anthracene compound (eta(4)-AnH)Mo(PMe(3))(3)H(2). Density functional theory calculations indicate that the increased facility of naphthalene and anthracene to adopt eta(4)-coordination modes compared to that of benzene is a consequence of the fact that the Mo-(eta(4)-ArH) bonding interaction increases in the sequence benzene < naphthalene < anthracene, while the Mo-(eta(6)-ArH) bonding interaction follows the sequence benzene > naphthalene approximately anthracene.
与苯和萘化合物(η(6)-PhH)Mo(PMe(3))(3) 及(η(6)-NpH)Mo(PMe(3))(3) 不同,蒽配合物(η(6)-AnH)Mo(PMe(3))(3) 与 H(2) 反应会发生亲核转移,生成 η(4)-蒽化合物(η(4)-AnH)Mo(PMe(3))(3)H(2)。密度泛函理论计算表明,与苯相比,萘和蒽更易采用 η(4)-配位模式,这是因为 Mo-(η(4)-ArH) 键相互作用按苯 < 萘 < 蒽的顺序增强,而 Mo-(η(6)-ArH) 键相互作用则按苯 > 萘≈蒽的顺序变化。