Suppr超能文献

一种基于代理和本体的用于整合公共基因、蛋白质和疾病数据库的系统。

An agent- and ontology-based system for integrating public gene, protein, and disease databases.

作者信息

Alonso-Calvo R, Maojo V, Billhardt H, Martin-Sanchez F, García-Remesal M, Pérez-Rey D

机构信息

Biomedical Informatics Group, Artificial Intelligence Laboratory, School of Computer Science, Universidad Politecnica de Madrid, Boadilla del Monte, 28660 Madrid, Spain.

出版信息

J Biomed Inform. 2007 Feb;40(1):17-29. doi: 10.1016/j.jbi.2006.02.014. Epub 2006 Mar 20.

Abstract

In this paper, we describe OntoFusion, a database integration system. This system has been designed to provide unified access to multiple, heterogeneous biological and medical data sources that are publicly available over Internet. Many of these databases do not offer a direct connection, and inquiries must be made via Web forms, returning results as HTML pages. A special module in the OntoFusion system is needed to integrate these public 'Web-based' databases. Domain ontologies are used to do this and provide database mapping and unification. We have used the system to integrate seven significant and widely used public biomedical databases: OMIM, PubMed, Enzyme, Prosite and Prosite documentation, PDB, SNP, and InterPro. A case study is detailed in depth, showing system performance. We analyze the system's architecture and methods and discuss its use as a tool for biomedical researchers.

摘要

在本文中,我们描述了数据库集成系统OntoFusion。该系统旨在提供对多个通过互联网公开可用的异构生物和医学数据源的统一访问。这些数据库中的许多都不提供直接连接,必须通过网页表单进行查询,并以HTML页面形式返回结果。OntoFusion系统中需要一个特殊模块来集成这些基于网络的公共数据库。领域本体用于实现这一点,并提供数据库映射和统一。我们已使用该系统集成了七个重要且广泛使用的公共生物医学数据库:OMIM、PubMed、酶、Prosite及Prosite文档、PDB、SNP和InterPro。深入详细地介绍了一个案例研究,展示了系统性能。我们分析了系统的架构和方法,并讨论了其作为生物医学研究人员工具的用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验