Suppr超能文献

大肠杆菌melR基因的突变分析提示了一种双态协同模型,用以解释蜜二糖操纵子中的转录激活与抑制。

Mutational analysis of the Escherichia coli melR gene suggests a two-state concerted model to explain transcriptional activation and repression in the melibiose operon.

作者信息

Kahramanoglou Christina, Webster Christine L, El-Robh Mohamed Samir, Belyaeva Tamara A, Busby Stephen J W

机构信息

School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

出版信息

J Bacteriol. 2006 May;188(9):3199-207. doi: 10.1128/JB.188.9.3199-3207.2006.

Abstract

Transcription of the Escherichia coli melAB operon is regulated by the MelR protein, an AraC family member whose activity is modulated by the binding of melibiose. In the absence of melibiose, MelR is unable to activate the melAB promoter but autoregulates its own expression by repressing the melR promoter. Melibiose triggers MelR-dependent activation of the melAB promoter and relieves MelR-dependent repression of the melR promoter. Twenty-nine single amino acid substitutions in MelR that result in partial melibiose-independent activation of the melAB promoter have been identified. Combinations of different substitutions result in almost complete melibiose-independent activation of the melAB promoter. MelR carrying each of the single substitutions is less able to repress the melR promoter, while MelR carrying some combinations of substitutions is completely unable to repress the melR promoter. These results argue that different conformational states of MelR are responsible for activation of the melAB promoter and repression of the melR promoter. Supporting evidence for this is provided by the isolation of substitutions in MelR that block melibiose-dependent activation of the melAB promoter while not changing melibiose-independent repression of the melR promoter. Additional experiments with a bacterial two-hybrid system suggest that interactions between MelR subunits differ according to the two conformational states.

摘要

大肠杆菌melAB操纵子的转录受MelR蛋白调控,MelR蛋白是AraC家族成员,其活性受蜜二糖结合的调节。在没有蜜二糖的情况下,MelR无法激活melAB启动子,但通过抑制melR启动子来自动调节自身表达。蜜二糖触发MelR依赖的melAB启动子激活,并解除MelR依赖的melR启动子抑制。已鉴定出MelR中的29个单氨基酸取代,这些取代导致melAB启动子部分不依赖蜜二糖的激活。不同取代的组合导致melAB启动子几乎完全不依赖蜜二糖的激活。携带每个单取代的MelR抑制melR启动子的能力较弱,而携带某些取代组合的MelR完全无法抑制melR启动子。这些结果表明,MelR的不同构象状态负责melAB启动子的激活和melR启动子的抑制。阻断melAB启动子的蜜二糖依赖激活而不改变melR启动子的不依赖蜜二糖抑制的MelR取代的分离提供了支持这一观点的证据。细菌双杂交系统的额外实验表明,MelR亚基之间的相互作用根据两种构象状态而有所不同。

相似文献

8
Genomic studies with Escherichia coli MelR protein: applications of chromatin immunoprecipitation and microarrays.
J Bacteriol. 2004 Oct;186(20):6938-43. doi: 10.1128/JB.186.20.6938-6943.2004.

引用本文的文献

1
Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of -HPI high-pathogenicity island in .
mSphere. 2024 Jan 30;9(1):e0059623. doi: 10.1128/msphere.00596-23. Epub 2023 Dec 11.
2
Effector Overlap between the and Operons of Escherichia coli: Induction of the Operon with β-Galactosides.
J Bacteriol. 2017 Apr 11;199(9). doi: 10.1128/JB.00796-16. Print 2017 May 1.
3
Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2407-12. doi: 10.1073/pnas.1500891112. Epub 2015 Feb 9.
5
Insights into the inhibitory mechanisms of the regulatory protein IIA(Glc) on melibiose permease activity.
J Biol Chem. 2014 Nov 21;289(47):33012-9. doi: 10.1074/jbc.M114.609255. Epub 2014 Oct 8.
6
DNA looping in prokaryotes: experimental and theoretical approaches.
J Bacteriol. 2013 Mar;195(6):1109-19. doi: 10.1128/JB.02038-12. Epub 2013 Jan 4.
9
Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR.
Nucleic Acids Res. 2008 May;36(8):2667-76. doi: 10.1093/nar/gkn119. Epub 2008 Mar 16.
10
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding.
J Bacteriol. 2008 May;190(9):3118-28. doi: 10.1128/JB.01784-07. Epub 2008 Feb 22.

本文引用的文献

2
Cupins: the most functionally diverse protein superfamily?
Phytochemistry. 2004 Jan;65(1):7-17. doi: 10.1016/j.phytochem.2003.08.016.
3
Mutational analysis of residue roles in AraC function.
J Mol Biol. 2003 Apr 18;328(1):85-93. doi: 10.1016/s0022-2836(03)00262-6.
4
AraC protein: a love-hate relationship.
Bioessays. 2003 Mar;25(3):274-82. doi: 10.1002/bies.10237.
5
Growing repertoire of AraC/XylS activators.
J Bacteriol. 2002 Oct;184(20):5529-32. doi: 10.1128/JB.184.20.5529-5532.2002.
6
DNA binding of the transcription activator protein MelR from Escherichia coli and its C-terminal domain.
Nucleic Acids Res. 2002 Jun 15;30(12):2692-700. doi: 10.1093/nar/gkf370.
7
AraC-XylS database: a family of positive transcriptional regulators in bacteria.
Nucleic Acids Res. 2002 Jan 1;30(1):318-21. doi: 10.1093/nar/30.1.318.
8
A simple mechanism for co-dependence on two activators at an Escherichia coli promoter.
EMBO J. 2001 Dec 17;20(24):7160-7. doi: 10.1093/emboj/20.24.7160.
9
Evolution of functional diversity in the cupin superfamily.
Trends Biochem Sci. 2001 Dec;26(12):740-6. doi: 10.1016/s0968-0004(01)01981-8.
10
Biophysical evidence of arm-domain interactions in AraC.
Anal Biochem. 2001 Aug 1;295(1):107-12. doi: 10.1006/abio.2001.5213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验