Suppr超能文献

大肠杆菌中半乳糖酶的诱导与诱导剂D-半乳糖的C-1-羟基光学构型无关。

Induction of the galactose enzymes in Escherichia coli is independent of the C-1-hydroxyl optical configuration of the inducer D-galactose.

作者信息

Lee Sang Jun, Lewis Dale E A, Adhya Sankar

机构信息

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.

出版信息

J Bacteriol. 2008 Dec;190(24):7932-8. doi: 10.1128/JB.01008-08. Epub 2008 Oct 17.

Abstract

The two optical forms of aldohexose galactose differing at the C-1 position, alpha-D-galactose and beta-D-galactose, are widespread in nature. The two anomers also occur in di- and polysaccharides, as well as in glycoconjugates. The anomeric form of D-galactose, when present in complex carbohydrates, e.g., cell wall, glycoproteins, and glycolipids, is specific. Their interconversion occurs as monomers and is effected by the enzyme mutarotase (aldose-1-epimerase). Mutarotase and other D-galactose-metabolizing enzymes are coded by genes that constitute an operon in Escherichia coli. The operon is repressed by the repressor GalR and induced by D-galactose. Since, depending on the carbon source during growth, the cell can make only one of the two anomers of D-galactose, the cell must also convert one anomer to the other for use in specific biosynthetic pathways. Thus, it is imperative that induction of the gal operon, specifically the mutarotase, be achievable by either anomer of D-galactose. Here we report in vivo and in vitro experiments showing that both alpha-D-galactose and beta-D-galactose are capable of inducing transcription of the gal operon with equal efficiency and kinetics. Whereas all substitutions at the C-1 position in the alpha configuration inactivate the induction capacity of the sugar, the effect of substitutions in the beta configuration varies depending upon the nature of the substitution; methyl and phenyl derivatives induce weakly, but the glucosyl derivative does not.

摘要

在C-1位置不同的己醛糖半乳糖的两种旋光形式,α-D-半乳糖和β-D-半乳糖,在自然界中广泛存在。这两种异头物也存在于二糖和多糖以及糖缀合物中。当D-半乳糖的异头形式存在于复合碳水化合物中,如细胞壁、糖蛋白和糖脂时,具有特异性。它们作为单体发生相互转化,并由变旋酶(醛糖-1-表异构酶)催化。变旋酶和其他D-半乳糖代谢酶由构成大肠杆菌中一个操纵子的基因编码。该操纵子由阻遏物GalR抑制,并由D-半乳糖诱导。由于根据生长过程中的碳源,细胞只能产生D-半乳糖的两种异头物中的一种,细胞还必须将一种异头物转化为另一种,以用于特定的生物合成途径。因此,至关重要的是,D-半乳糖的任何一种异头物都能够诱导gal操纵子,特别是变旋酶的表达。在此,我们报告体内和体外实验,表明α-D-半乳糖和β-D-半乳糖都能够以相同的效率和动力学诱导gal操纵子的转录。虽然α构型中C-1位置的所有取代都会使糖的诱导能力失活,但β构型中取代的影响因取代的性质而异;甲基和苯基衍生物诱导作用较弱,但葡糖基衍生物则无诱导作用。

相似文献

2
Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli.
J Mol Biol. 1994 Dec 2;244(3):269-78. doi: 10.1006/jmbi.1994.1728.
3
The non-inducible nature of super-repressors of the gal operon in Escherichia coli.
J Mol Biol. 1995 Oct 27;253(3):414-25. doi: 10.1006/jmbi.1995.0563.
4
Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA.
J Mol Biol. 2006 Apr 28;358(2):355-63. doi: 10.1016/j.jmb.2006.02.022. Epub 2006 Feb 28.
5
The gal genes for the Leloir pathway of Lactobacillus casei 64H.
Appl Environ Microbiol. 1998 Jun;64(6):2013-9. doi: 10.1128/AEM.64.6.2013-2019.1998.
6
The galactose regulon of Escherichia coli.
Mol Microbiol. 1993 Oct;10(2):245-51. doi: 10.1111/j.1365-2958.1993.tb01950.x.
7
Further inducibility of a constitutive system: ultrainduction of the gal operon.
J Bacteriol. 1991 Apr;173(7):2319-27. doi: 10.1128/jb.173.7.2319-2327.1991.
9
Identification of a mutarotase gene involved in D-galactose utilization in Aspergillus nidulans.
FEMS Microbiol Lett. 2017 Nov 1;364(20). doi: 10.1093/femsle/fnx202.
10
Multiple regulator gene control of the galactose operon in Escherichia coli K-12.
J Bacteriol. 1972 Jun;110(3):1089-99. doi: 10.1128/jb.110.3.1089-1099.1972.

引用本文的文献

2
Structure and function of the D-galactose network in enterobacteria.
mBio. 2011 Jun 28;2(4):e00053-11. doi: 10.1128/mBio.00053-11. Print 2011.
3
Cellular stress created by intermediary metabolite imbalances.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19515-20. doi: 10.1073/pnas.0910586106. Epub 2009 Nov 3.

本文引用的文献

1
DNA sequences in gal operon override transcription elongation blocks.
J Mol Biol. 2008 Oct 17;382(4):843-58. doi: 10.1016/j.jmb.2008.07.060. Epub 2008 Jul 27.
2
Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.
Biochemistry. 2007 Dec 25;46(51):15198-207. doi: 10.1021/bi701891t. Epub 2007 Dec 4.
3
Characterization and role of fucose mutarotase in mammalian cells.
Glycobiology. 2007 Sep;17(9):955-62. doi: 10.1093/glycob/cwm066. Epub 2007 Jun 29.
4
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
5
D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates.
Microbiology (Reading). 2006 May;152(Pt 5):1507-1514. doi: 10.1099/mic.0.28719-0.
7
Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA.
J Mol Biol. 2006 Apr 28;358(2):355-63. doi: 10.1016/j.jmb.2006.02.022. Epub 2006 Feb 28.
9
NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration.
J Biol Chem. 2004 Jun 11;279(24):25544-8. doi: 10.1074/jbc.M402016200. Epub 2004 Apr 1.
10
The enzymatic transformation of uridine diphosphate glucose into a galactose derivative.
Arch Biochem Biophys. 1951 Sep;33(2):186-90. doi: 10.1016/0003-9861(51)90096-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验