Laia César A T, Costa Sílvia M B, Vieira Ferreira L F
Centro de Química-Estrutural, Complexo 1, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
Biophys Chem. 2006 Jul 20;122(2):143-55. doi: 10.1016/j.bpc.2006.03.003. Epub 2006 Mar 12.
The mechanism of electron-transfer from aluminium tetrasulfonated phthalocyanine triplet state to cytochrome c was investigated in this work. This reaction successfully quenches the dye triplet state due to the formation of complexes between the solute and the protein at the active site. The electron-transfer rate constant is around 3x10(7) s(-1), and is in accordance with previous results for the singlet excited state quenching [C.A.T. Laia, S.M.B. Costa, D. Phillips, A. Beeby. Electron-transfer kinetics in sulfonated aluminum phthalocyanines/cytochrome c complexes, J. Phys. Chem. B 108 (2004) 7506-7514.] in the framework of the Marcus theory, with a reorganization energy equal to 0.94 eV. The complex formation is diffusion controlled, but heterogeneities of the protein surface charge distribution lead to quenching rate constants smaller than predicted on a hard-spheres model with electrostatic interactions. Also the binding equilibrium constant is strongly affected by this phenomenon. Ionic strength plays an important role on the complex formation, but its effect on the unimolecular electron-transfer rate constant is negligible within experimental error.
本工作研究了四磺化酞菁铝三重态向细胞色素c的电子转移机制。由于溶质与活性位点处蛋白质之间形成复合物,该反应成功猝灭了染料三重态。电子转移速率常数约为3×10⁷ s⁻¹,这与之前关于单重激发态猝灭的结果[C.A.T. Laia, S.M.B. Costa, D. Phillips, A. Beeby. Electron-transfer kinetics in sulfonated aluminum phthalocyanines/cytochrome c complexes, J. Phys. Chem. B 108 (2004) 7506-7514.]在马库斯理论框架内相符,重组能等于0.94 eV。复合物的形成受扩散控制,但蛋白质表面电荷分布的不均匀性导致猝灭速率常数小于基于具有静电相互作用的硬球模型所预测的值。此外,这种现象对结合平衡常数也有很大影响。离子强度在复合物形成过程中起重要作用,但在实验误差范围内,其对单分子电子转移速率常数的影响可忽略不计。