Catarino T, Coletta M, LeGall J, Xavier A V
Centro de Tecnologia Química e Biológica, Oeiras, Portugal.
Eur J Biochem. 1991 Dec 18;202(3):1107-13. doi: 10.1111/j.1432-1033.1991.tb16477.x.
The kinetic aspects of the reduction process in cytochrome c3 from Desulfovibrio gigas have been investigated over a wide range of pH values ranging between pH 5.8 and pH 9.8. The data have been analyzed in the framework of an I2H4 interaction network coupled to a proton-linked equilibrium between two tertiary structures (Cornish-Bowden, A. & Koshland, D.E. Jr (1970) J. Biol. Chem. 245, 6241-6250). The kinetic rate constants for the reduction of the four hemes for the two tertiary conformations have been characterized in the framework of the thermodynamic network obtained from the equilibrium analysis (Coletta, M., Catarino, T., LeGall, J.J. & Xavier, A.V. (1991) Eur. J. Biochem. 202, 1101-1106). The intrinsic reduction rate constants determined by reaction with sodium dithionite for two hemes (namely heme 4 and heme 1) are significantly faster than those for the other two heme residues. In view of the equilibrium redox properties, heme 4 (with the fastest reduction rate) may then work as the kinetic electron-capturing site for the electrons from sodium dithionite. The transfer to hemes 2 and 3 then occurs by virtue of their free-energy levels at equilibrium. At our experimental conditions, there is also transfer of electrons to hemes 2 and 3 from heme 1, which is reduced at a slower rate than heme 4, thus contributing to the biphasic kinetics observed for the overall process. The kinetic parameters obtained are discussed in terms of the mechanism proposed for the coupling between the electron and proton transfer, as induced by the heme/heme cooperativity network.
对巨大脱硫弧菌细胞色素c3还原过程的动力学方面进行了研究,研究范围涵盖pH值5.8至9.8的广泛区间。数据在与两个三级结构之间质子连接平衡相耦合的I2H4相互作用网络框架内进行了分析(Cornish - Bowden, A. & Koshland, D.E. Jr (1970) J. Biol. Chem. 245, 6241 - 6250)。在从平衡分析获得的热力学网络框架内,对两种三级构象的四个血红素还原的动力学速率常数进行了表征(Coletta, M., Catarino, T., LeGall, J.J. & Xavier, A.V. (1991) Eur. J. Biochem. 202, 1101 - 1106)。通过与连二亚硫酸钠反应测定的两个血红素(即血红素4和血红素1)的固有还原速率常数明显快于其他两个血红素残基的速率常数。鉴于平衡氧化还原性质,还原速率最快的血红素4可能充当来自连二亚硫酸钠电子的动力学电子捕获位点。然后通过血红素2和3在平衡时的自由能水平实现向它们的电子转移。在我们的实验条件下,也存在从还原速率比血红素4慢的血红素1向血红素2和3的电子转移,这导致了整个过程观察到的双相动力学。根据由血红素/血红素协同网络诱导的电子和质子转移耦合所提出的机制,对获得的动力学参数进行了讨论。