Suppr超能文献

胶质细胞源性神经营养因子可减轻血清剥夺诱导的酪氨酸羟化酶丝氨酸19磷酸化及活性。

GDNF abates serum deprivation-induced tyrosine hydroxylase Ser19 phosphorylation and activity.

作者信息

Kobori Nobuhide, Moore Anthony N, Dash Pramod K

机构信息

Department of Neurobiology and Anatomy, The Vivian L. Smith Center for Neurological Research, The University of Texas Medical School, PO Box 20708, Houston, 77255, USA.

出版信息

Brain Res. 2006 May 1;1086(1):142-51. doi: 10.1016/j.brainres.2006.02.111. Epub 2006 Apr 13.

Abstract

High dopamine levels can contribute to neuronal dysfunction, impair plasticity and be toxic to neuronal cells in pathological conditions. The synthesis of dopamine is regulated by phosphorylation of the rate-limiting enzyme tyrosine hydroxylase (TH) under physiological conditions, with the phosphorylation of Ser31 and Ser40 directly increasing TH activity. Although a third phosphorylation site, Ser19, does not appear to directly regulate TH activity in physiological conditions, its role in pathological conditions is poorly understood. In this study, we examined the effects of serum deprivation (to mimic loss of retrogradely/anterogradely transported target-derived neurotrophic factors following axonal injury) and glutamate receptor stimulation (to mimic excitotoxicity) on TH phosphorylation and activity in a cell line and in mesencephalic primary culture cells. In addition, we also tested whether glial cell line-derived neurotrophic factor (GDNF) can alter these changes. We demonstrate that serum-deprivation resulted in a sustained increase in Ser19 phosphorylation beginning at 3 h and lasting up to 10 h without any detectable change in Ser31 or Ser40 phosphorylation within this time frame. This increase in Ser19 phosphorylation was associated with enhanced TH activity and was due, in part, to glutamate-receptor-mediated calcium influx and possibly calcium/calmodulin-dependent protein kinase II (CaMKII) activation. Interestingly in this serum-deprivation model, GDNF blocked the increase in Ser19 phosphorylation and TH activity at the 10-h time point following serum deprivation. Furthermore, GDNF also blocked the glutamate-mediated increase in Ser19 phosphorylation in rat primary mesencephalic neuronal cultures. Taken together, these findings suggest that GDNF may reduce dopamine synthesis in pathological conditions.

摘要

高多巴胺水平可导致神经元功能障碍、损害可塑性,并在病理条件下对神经元细胞产生毒性。在生理条件下,多巴胺的合成受限速酶酪氨酸羟化酶(TH)磷酸化的调节,Ser31和Ser40的磷酸化直接增加TH活性。虽然第三个磷酸化位点Ser19在生理条件下似乎不直接调节TH活性,但其在病理条件下的作用却知之甚少。在本研究中,我们检测了血清剥夺(模拟轴突损伤后逆行/顺行运输的靶源性神经营养因子的丧失)和谷氨酸受体刺激(模拟兴奋性毒性)对细胞系和中脑原代培养细胞中TH磷酸化和活性的影响。此外,我们还测试了胶质细胞系源性神经营养因子(GDNF)是否能改变这些变化。我们证明,血清剥夺导致Ser19磷酸化从3小时开始持续增加,持续长达10小时,在此时间范围内Ser31或Ser40磷酸化没有任何可检测到的变化。Ser19磷酸化的这种增加与TH活性增强有关,部分原因是谷氨酸受体介导的钙内流以及可能的钙/钙调蛋白依赖性蛋白激酶II(CaMKII)激活。有趣的是,在这个血清剥夺模型中,GDNF在血清剥夺后10小时的时间点阻断了Ser19磷酸化和TH活性的增加。此外,GDNF还阻断了大鼠原代中脑神经元培养物中谷氨酸介导的Ser19磷酸化增加。综上所述,这些发现表明GDNF可能在病理条件下减少多巴胺的合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验