Tauskela Joseph Stephen, Brunette Eric, Hewitt Melissa, Mealing Geoff, Morley Paul
National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Montreal Road Campus, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
Neurosci Lett. 2006 Jul 3;401(3):236-41. doi: 10.1016/j.neulet.2006.03.046. Epub 2006 Apr 24.
The goal of this study was to determine if novel porphyrins protect cultured cortical neurons from excitotoxic NMDA exposure or oxygen-glucose deprivation (OGD), which model key aspects of cerebral ischemia. Porphyrins were chosen based on conventional and unconventional criteria. Metalloporphyrin catalytic antioxidants possessing a redox-sensitive metal core can exhibit potent and wide-ranging catalytic antioxidant abilities, which are conventionally believed to underlie neuroprotection. We report here that a recent-generation potent peroxynitrite decomposition catalyst, FP-15, protected a majority of neurons against OGD and NMDA toxicity, without suppressing NMDA-mediated intracellular Ca2+ (Cai2+) elevations or whole-cell currents. We have previously shown that neuroprotection against OGD and NMDA toxicity correlated with an ability to suppress neurotoxic Cai2+ elevations and not antioxidant ability. We now evaluate if this unconventional mechanism extends to inert metal-free porphyrins. Neuron cultures were completely protected against OGD and NMDA toxicity by H2-meso-tetrakis(3-benzoic acid)porphyrin (H2-TBAP(3)) or H2-meso-tetrakis(4-sulfonatophenyl)porphyrin (H2-TPPS(4)), although only H2-TPPS(4) suppressed (completely) NMDA-induced Cai2+ rises. H2-meso-tetrakis(3,3'-benzoic acid)porphyrin (H2-TBAP(3,3')) or H2-meso-tetrakis(N-methylpyridynium-4-yl)porphyrin (H2-TM-PyP(4)) provided at least partial protection against OGD and NMDA toxicity and partially suppressed NMDA-induced Cai2+ elevations. Despite the complexity of Ca2+-independent and -dependent based mechanisms, the inventory of porphyrins demonstrating neuroprotection in ischemia-relevant insults is now expanded to include FP-15 and inert metal-free compounds, although with no apparent advantage gained by using FP-15.
本研究的目的是确定新型卟啉是否能保护培养的皮质神经元免受兴奋性毒性NMDA暴露或氧-葡萄糖剥夺(OGD)的影响,这两种情况模拟了脑缺血的关键方面。卟啉是根据传统和非传统标准选择的。具有氧化还原敏感金属核心的金属卟啉催化抗氧化剂可表现出强大且广泛的催化抗氧化能力,传统上认为这是神经保护的基础。我们在此报告,新一代强效过氧亚硝酸盐分解催化剂FP-15可保护大多数神经元免受OGD和NMDA毒性的影响,而不会抑制NMDA介导的细胞内Ca2+(Cai2+)升高或全细胞电流。我们之前已经表明,针对OGD和NMDA毒性的神经保护作用与抑制神经毒性Cai2+升高的能力相关,而非抗氧化能力。我们现在评估这种非传统机制是否也适用于无活性金属的卟啉。尽管只有H2-TPPS(4)能完全抑制NMDA诱导的Cai2+升高,但H2-中-四(3-苯甲酸)卟啉(H2-TBAP(3))或H2-中-四(4-磺酸苯基)卟啉(H2-TPPS(4))可使神经元培养物完全免受OGD和NMDA毒性的影响。H2-中-四(3,3'-苯甲酸)卟啉(H2-TBAP(3,3'))或H2-中-四(N-甲基吡啶鎓-4-基)卟啉(H2-TM-PyP(4))可提供至少部分保护,防止OGD和NMDA毒性,并部分抑制NMDA诱导的Cai2+升高。尽管基于Ca2+非依赖性和依赖性机制较为复杂,但在与缺血相关的损伤中显示出神经保护作用的卟啉种类现在已扩展到包括FP-15和无活性金属的化合物,尽管使用FP-15并没有明显优势。