Suppr超能文献

膜蛋白的荧光共振能量转移研究:基于模拟的拟合用于分析膜蛋白的嵌入和缔合

FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association.

作者信息

Nazarov Petr V, Koehorst Rob B M, Vos Werner L, Apanasovich Vladimir V, Hemminga Marcus A

机构信息

Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands.

出版信息

Biophys J. 2006 Jul 15;91(2):454-66. doi: 10.1529/biophysj.106.082867. Epub 2006 Apr 21.

Abstract

A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulation-based fitting. The simulation of FRET was validated by a comparison with a known analytical solution for energy transfer in idealized membrane systems. The applicability of the simulation-based fitting approach was verified on simulated FRET data and then applied to determine the structural properties of the well-known major coat protein from bacteriophage M13 reconstituted into unilamellar DOPC/DOPG (4:1 mol/mol) vesicles. For our purpose, the cysteine mutants Y24C, G38C, and T46C of this protein were produced and specifically labeled with the fluorescence label AEDANS. The energy transfer data from the natural tryptophan at position 26, which is used as a donor, to AEDANS were analyzed assuming a helix model for the transmembrane domain of the protein. As a result of the FRET data analysis, the topology and bilayer embedment of this domain were quantitatively characterized. The resulting tilt of the transmembrane helix of the protein is 18 +/- 2 degrees. The tryptophan is located at a distance of 8.5 +/- 0.5 A from the membrane center. No specific aggregation of the protein was found. The methodology developed here is not limited to M13 major coat protein and can be used in principle to study the bilayer embedment of any small protein with a single transmembrane domain.

摘要

开发了一种同时测定膜蛋白的膜嵌入和聚集的新形式。该方法基于对定点荧光标记蛋白进行稳态Förster(或荧光)共振能量转移(FRET)实验,并结合基于模拟拟合的全局数据分析。通过与理想化膜系统中能量转移的已知解析解进行比较,验证了FRET模拟。在模拟的FRET数据上验证了基于模拟拟合方法的适用性,然后将其应用于确定重组到单层DOPC/DOPG(4:1摩尔/摩尔)囊泡中的噬菌体M13著名主要外壳蛋白的结构特性。为了我们的目的,制备了该蛋白的半胱氨酸突变体Y24C、G38C和T46C,并用荧光标记AEDANS进行了特异性标记。假设该蛋白跨膜结构域为螺旋模型,分析了从位置26处用作供体的天然色氨酸到AEDANS的能量转移数据。作为FRET数据分析的结果,对该结构域的拓扑结构和双层嵌入进行了定量表征。该蛋白跨膜螺旋的倾斜角度为18±2度。色氨酸位于距膜中心8.5±0.5 Å处。未发现该蛋白有特异性聚集。这里开发的方法不限于M13主要外壳蛋白,原则上可用于研究任何具有单个跨膜结构域的小蛋白的双层嵌入。

相似文献

1
FRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association.
Biophys J. 2006 Jul 15;91(2):454-66. doi: 10.1529/biophysj.106.082867. Epub 2006 Apr 21.
2
FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein.
Biophys J. 2007 Feb 15;92(4):1296-305. doi: 10.1529/biophysj.106.095026. Epub 2006 Nov 17.
3
Membrane-bound conformation of M13 major coat protein: a structure validation through FRET-derived constraints.
J Biol Chem. 2005 Nov 18;280(46):38522-7. doi: 10.1074/jbc.M505875200. Epub 2005 Sep 8.
5
Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins.
Eur Biophys J. 2010 Jan;39(2):229-39. doi: 10.1007/s00249-009-0527-9. Epub 2009 Aug 11.
8
Membrane-anchoring interactions of M13 major coat protein.
Biochemistry. 2001 Jul 31;40(30):8815-20. doi: 10.1021/bi002956s.
9
Local dynamics of the M13 major coat protein in different membrane-mimicking systems.
Biochemistry. 1996 Dec 3;35(48):15467-73. doi: 10.1021/bi961770j.
10
Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor.
Biochim Biophys Acta Biomembr. 2019 Oct 1;1861(10):182995. doi: 10.1016/j.bbamem.2019.05.017. Epub 2019 May 25.

引用本文的文献

3
Förster Resonance Energy Transfer Study of Cytochrome c-Lipid Interactions.
J Fluoresc. 2018 Jan;28(1):79-88. doi: 10.1007/s10895-017-2176-1. Epub 2017 Sep 6.
4
Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.
PLoS One. 2017 May 19;12(5):e0177122. doi: 10.1371/journal.pone.0177122. eCollection 2017.
5
FRET studies of various conformational states adopted by transthyretin.
Cell Mol Life Sci. 2017 Oct;74(19):3577-3598. doi: 10.1007/s00018-017-2533-x. Epub 2017 May 6.
6
Visualization of Protein Interactions in Living Cells.
Self Nonself. 2011 Apr;2(2):98-107. doi: 10.4161/self.2.2.17932. Epub 2011 Apr 1.
7
Viruses: incredible nanomachines. New advances with filamentous phages.
Eur Biophys J. 2010 Mar;39(4):541-50. doi: 10.1007/s00249-009-0523-0. Epub 2009 Aug 13.
8
Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins.
Eur Biophys J. 2010 Jan;39(2):229-39. doi: 10.1007/s00249-009-0527-9. Epub 2009 Aug 11.
9
Visualization of protein interactions in living cells.
Adv Exp Med Biol. 2008;640:183-97. doi: 10.1007/978-0-387-09789-3_14.
10
A novel switch region regulates H-ras membrane orientation and signal output.
EMBO J. 2008 Mar 5;27(5):727-35. doi: 10.1038/emboj.2008.10. Epub 2008 Feb 14.

本文引用的文献

1
Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch.
J Biol Chem. 2005 Nov 25;280(47):39324-31. doi: 10.1074/jbc.M502810200. Epub 2005 Sep 15.
2
Membrane-bound conformation of M13 major coat protein: a structure validation through FRET-derived constraints.
J Biol Chem. 2005 Nov 18;280(46):38522-7. doi: 10.1074/jbc.M505875200. Epub 2005 Sep 8.
3
Spin label EPR-based characterization of biosystem complexity.
J Chem Inf Model. 2005 Mar-Apr;45(2):394-406. doi: 10.1021/ci049748h.
5
Quantification of Protein-Lipid Selectivity using FRET: Application to the M13 Major Coat Protein.
Biophys J. 2004 Jul;87(1):344-52. doi: 10.1529/biophysj.104.040337.
7
Artificial neural network modification of simulation-based fitting: application to a protein-lipid system.
J Chem Inf Comput Sci. 2004 Mar-Apr;44(2):568-74. doi: 10.1021/ci034149g.
8
Dependence of M13 major coat protein oligomerization and lateral segregation on bilayer composition.
Biophys J. 2003 Oct;85(4):2430-41. doi: 10.1016/S0006-3495(03)74666-9.
9
FRET or no FRET: a quantitative comparison.
Biophys J. 2003 Jun;84(6):3992-4010. doi: 10.1016/S0006-3495(03)75126-1.
10
Protein-lipid interactions of bacteriophage M13 major coat protein.
Biochim Biophys Acta. 2003 Apr 1;1611(1-2):5-15. doi: 10.1016/s0005-2736(03)00047-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验