Suppr超能文献

有无荧光共振能量转移:定量比较

FRET or no FRET: a quantitative comparison.

作者信息

Berney Claude, Danuser Gaudenz

机构信息

BioMicroMetrics Group, Laboratory for Biomechanics, Swiss Federal Institute of Technology, CH-8952 Schlieren, Switzerland.

出版信息

Biophys J. 2003 Jun;84(6):3992-4010. doi: 10.1016/S0006-3495(03)75126-1.

Abstract

Fluorescence resonance energy transfer (FRET) is a technique used to measure the interaction between two molecules labeled with two different fluorophores (the donor and the acceptor) by the transfer of energy from the excited donor to the acceptor. In biological applications, this technique has become popular to qualitatively map protein-protein interactions, and in biophysical projects it is used as a quantitative measure for distances between a single donor and acceptor molecule. Numerous approaches can be found in the literature to quantify and map FRET, but the measures they provide are often difficult to interpret. We propose here a quantitative comparison of these methods by using a surface FRET system with controlled amounts of donor and acceptor fluorophores and controlled distances between them. We support the system with a Monte Carlo simulation of FRET, which provides reference values for the FRET efficiency under various experimental conditions. We validate a representative set of FRET efficiencies and indices calculated from the different methods with different experimental settings. Finally, we test their sensitivity and draw conclusions for the preparation of FRET experiments in more complex and less-controlled systems.

摘要

荧光共振能量转移(FRET)是一种用于测量两个分别标记有两种不同荧光团(供体和受体)的分子之间相互作用的技术,其原理是通过能量从处于激发态的供体转移到受体。在生物学应用中,该技术已广泛用于定性绘制蛋白质 - 蛋白质相互作用图谱,并且在生物物理项目中,它被用作测量单个供体和受体分子之间距离的定量方法。文献中可以找到许多量化和绘制FRET的方法,但它们提供的测量结果往往难以解释。我们在此提出通过使用具有可控数量的供体和受体荧光团以及它们之间可控距离的表面FRET系统对这些方法进行定量比较。我们通过FRET的蒙特卡罗模拟来支持该系统,该模拟可为各种实验条件下的FRET效率提供参考值。我们用不同实验设置验证了从不同方法计算出的一组具有代表性的FRET效率和指标。最后,我们测试它们的灵敏度,并为在更复杂且控制较少的系统中进行FRET实验的准备工作得出结论。

相似文献

1
FRET or no FRET: a quantitative comparison.
Biophys J. 2003 Jun;84(6):3992-4010. doi: 10.1016/S0006-3495(03)75126-1.
2
Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
Talanta. 2009 Dec 15;80(2):454-8. doi: 10.1016/j.talanta.2009.07.011. Epub 2009 Jul 10.
3
Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer.
Anal Chim Acta. 2007 Feb 28;585(1):120-5. doi: 10.1016/j.aca.2006.12.021. Epub 2006 Dec 19.
4
Fanciful FRET.
Sci STKE. 2006 Apr 18;2006(331):re2. doi: 10.1126/stke.3312006re2.
7
Strength in numbers: effects of acceptor abundance on FRET efficiency.
Chemphyschem. 2010 Dec 3;11(17):3713-21. doi: 10.1002/cphc.201000568.
8
Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET.
Chemphyschem. 2011 Feb 25;12(3):571-9. doi: 10.1002/cphc.201000834. Epub 2011 Jan 30.
10
Re-evaluation of biotin-streptavidin conjugation in Förster resonance energy transfer applications.
J Biomed Opt. 2014 Aug;19(8):085008. doi: 10.1117/1.JBO.19.8.085008.

引用本文的文献

2
Direct Quantification of Protein-Protein Interactions in Living Bacterial Cells.
Adv Sci (Weinh). 2025 May;12(19):e2414777. doi: 10.1002/advs.202414777. Epub 2025 Mar 24.
3
Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?
Membranes (Basel). 2025 Jan 1;15(1):6. doi: 10.3390/membranes15010006.
4
Spectroscopic investigation of two xanthane dyes and design of a FRET based pesticide sensor.
Sci Rep. 2025 Jan 22;15(1):2824. doi: 10.1038/s41598-024-84846-7.
6
Multicolor, Cell-Impermeable, and High Affinity BACE1 Inhibitor Probes Enable Superior Endogenous Staining and Imaging of Single Molecules.
J Med Chem. 2024 Jun 27;67(12):10152-10167. doi: 10.1021/acs.jmedchem.4c00339. Epub 2024 Jun 6.
7
Live cell microscopy: From image to insight.
Biophys Rev (Melville). 2022 Apr 21;3(2):021302. doi: 10.1063/5.0082799. eCollection 2022 Jun.
8
Live-cell biosensors based on the fluorescence lifetime of environment-sensing dyes.
Cell Rep Methods. 2024 Mar 25;4(3):100734. doi: 10.1016/j.crmeth.2024.100734. Epub 2024 Mar 18.
9
Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology.
J Microsc. 2025 May;298(2):123-184. doi: 10.1111/jmi.13270. Epub 2024 Feb 15.
10
Integrated FRET Polymers Spatially Reveal Micro- to Nanostructure and Irregularities in Electrospun Microfibers.
Adv Sci (Weinh). 2023 Dec;10(36):e2304488. doi: 10.1002/advs.202304488. Epub 2023 Oct 28.

本文引用的文献

2
Fluorescence resonance energy transfer using color variants of green fluorescent protein.
Methods Enzymol. 2002;351:34-49. doi: 10.1016/s0076-6879(02)51840-1.
4
Fluorescent indicators for imaging protein phosphorylation in single living cells.
Nat Biotechnol. 2002 Mar;20(3):287-94. doi: 10.1038/nbt0302-287.
8
Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes.
Biophys J. 2001 Oct;81(4):2395-402. doi: 10.1016/S0006-3495(01)75886-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验