Liu Zhiping, Wu Xiaoping, Wang Wenchuan
Division of Molecular and Materials Simulation, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, USA.
Phys Chem Chem Phys. 2006 Mar 7;8(9):1096-104. doi: 10.1039/b515905a. Epub 2006 Jan 3.
A novel united-atom (UA) force field is proposed from our previously developed all-atom (AA) force field for the imidazolium-based ionic liquids by the introduction of a coarse-grained method. The Lennard-Jones parameters for CH(2) and CH(3) in alkyls are fitted to match the AA force field, and the partial atomic charges are re-fitted by the one conformation two-step RESP method. The force field is verified by molecular dynamics simulations of pure ionic liquids and the mixture of [bmim][BF(4)] and acetonitrile. The densities, self-diffusion coefficients, vaporization enthalpies, cohesive energy densities, and microscopic structures of both the pure components and mixtures are simulated. The simulated results from the UA force field agree well with those from the AA force field. In addition, the predictive capability of the UA force field for the liquid densities of [C(n)mim][PF(6)] is tested. The UA force field proposed in this work provides a useful tool with good accuracy and much less computational intensity for future molecular design of ionic liquids.
通过引入粗粒化方法,基于我们之前开发的用于咪唑基离子液体的全原子(AA)力场,提出了一种新型的联合原子(UA)力场。对烷基中CH(2)和CH(3)的 Lennard-Jones 参数进行拟合以匹配 AA 力场,并通过单构象两步 RESP 方法重新拟合部分原子电荷。通过纯离子液体以及[bmim][BF(4)]与乙腈混合物的分子动力学模拟对该力场进行了验证。模拟了纯组分和混合物的密度、自扩散系数、汽化焓、内聚能密度以及微观结构。UA 力场的模拟结果与 AA 力场的结果吻合良好。此外,测试了 UA 力场对[C(n)mim][PF(6)]液体密度的预测能力。本文提出的 UA 力场为未来离子液体的分子设计提供了一种具有良好准确性且计算强度低得多的有用工具。