Féréol Sophie, Fodil Redouane, Labat Béatrice, Galiacy Stéphane, Laurent Valérie M, Louis Bruno, Isabey Daniel, Planus Emmanuelle
Inserm UMR 651, Fonctions Cellulaires et Moléculaires de l'Appareil Respiratoire et des Vaisseaux, Equipe Biomécanique Cellulaire et Respiratoire et Université Paris XII, Faculté de Médecine, Institut Supérieur des Biosciences de Paris, Créteil, France.
Cell Motil Cytoskeleton. 2006 Jun;63(6):321-40. doi: 10.1002/cm.20130.
In order to understand the sensitivity of alveolar macrophages (AMs) to substrate properties, we have developed a new model of macrophages cultured on substrates of increasing Young's modulus: (i) a monolayer of alveolar epithelial cells representing the supple (approximately 0.1 kPa) physiological substrate, (ii) polyacrylamide gels with two concentrations of bis-acrylamide representing low and high intermediate stiffness (respectively 40 kPa and 160 kPa) and, (iii) a highly rigid surface of plastic or glass (respectively 3 MPa and 70 MPa), the two latter being or not functionalized with type I-collagen. The macrophage response was studied through their shape (characterized by 3D-reconstructions of F-actin structure) and their cytoskeletal stiffness (estimated by transient twisting of magnetic RGD-coated beads and corrected for actual bead immersion). Macrophage shape dramatically changed from rounded to flattened as substrate stiffness increased from soft ((i) and (ii)) to rigid (iii) substrates, indicating a net sensitivity of alveolar macrophages to substrate stiffness but without generating F-actin stress fibers. Macrophage stiffness was also increased by large substrate stiffness increase but this increase was not due to an increase in internal tension assessed by the negligible effect of a F-actin depolymerizing drug (cytochalasine D) on bead twisting. The mechanical sensitivity of AMs could be partly explained by an idealized numerical model describing how low cell height enhances the substrate-stiffness-dependence of the apparent (measured) AM stiffness. Altogether, these results suggest that macrophages are able to probe their physical environment but the mechanosensitive mechanism behind appears quite different from tissue cells, since it occurs at no significant cell-scale prestress, shape changes through minimal actin remodeling and finally an AMs stiffness not affected by the loss in F-actin integrity.
为了了解肺泡巨噬细胞(AMs)对底物特性的敏感性,我们开发了一种新模型,将巨噬细胞培养在杨氏模量不断增加的底物上:(i)代表柔软(约0.1 kPa)生理底物的肺泡上皮细胞单层;(ii)含有两种双丙烯酰胺浓度的聚丙烯酰胺凝胶,分别代表低和高中等硬度(分别为40 kPa和160 kPa);以及(iii)塑料或玻璃的高刚性表面(分别为3 MPa和70 MPa),后两者用I型胶原蛋白进行或未进行功能化处理。通过巨噬细胞的形状(由F-肌动蛋白结构的三维重建表征)和它们的细胞骨架硬度(通过磁性RGD包被珠的瞬时扭转估计,并针对实际的珠浸入进行校正)来研究巨噬细胞的反应。随着底物硬度从柔软的((i)和(ii))增加到刚性的(iii)底物,巨噬细胞的形状从圆形急剧变为扁平形,这表明肺泡巨噬细胞对底物硬度具有净敏感性,但不会产生F-肌动蛋白应力纤维。底物硬度的大幅增加也会使巨噬细胞硬度增加,但这种增加并非由于F-肌动蛋白解聚药物(细胞松弛素D)对珠扭转的可忽略不计的影响所评估的内部张力增加。AMs的机械敏感性可以部分由一个理想化的数值模型来解释,该模型描述了低细胞高度如何增强表观(测量)AMs硬度对底物硬度的依赖性。总之,这些结果表明巨噬细胞能够探测其物理环境,但背后的机械敏感机制似乎与组织细胞有很大不同,因为它发生在无显著细胞尺度预应力的情况下,通过最小的肌动蛋白重塑实现形状变化,最终AMs硬度不受F-肌动蛋白完整性丧失的影响。