Féréol Sophie, Fodil Redouane, Pelle Gabriel, Louis Bruno, Isabey Daniel
Inserm, UMR 841, Biomécanique Cellulaire et Respiratoire, Créteil F-94010, France.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):3-16. doi: 10.1016/j.resp.2008.04.018. Epub 2008 May 13.
Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The authors study the mechanical responses of alveolar cells, namely epithelial cells and macrophages, exposed to well-controlled mechanical stress in order to understand pulmonary cell response and function. They discuss the principle, advantages and limits of a cytoskeleton-specific micromanipulation technique, magnetic bead twisting cytometry, potentially applicable in vivo. They also compare the pertinence of various models (e.g., rheological; power law) used to extract cell mechanical properties and discuss cell stress/strain hardening properties and cell dynamic response in relation to the structural tensegrity model. Overall, alveolar cells provide a pertinent model to study the biological processes governing cellular response to controlled stress or strain.
细胞力学提供了许多与细胞结构和功能密切相关的生物现象的综合观点。由于呼吸是一种与生命同义的持续运动,肺细胞通常被设计成能够支持永久性的周期性拉伸而不破裂,同时从其环境中接收机械信号。作者研究了肺泡细胞,即上皮细胞和巨噬细胞,在受到良好控制的机械应力时的力学反应,以了解肺细胞的反应和功能。他们讨论了一种可能适用于体内的细胞骨架特异性微操纵技术——磁珠扭转细胞术的原理、优点和局限性。他们还比较了用于提取细胞力学特性的各种模型(如流变学模型、幂律模型)的相关性,并讨论了与结构张拉整体模型相关的细胞应力/应变硬化特性和细胞动态反应。总体而言,肺泡细胞为研究控制细胞对应力或应变反应的生物学过程提供了一个相关模型。