Kolakowski Robert V, Shangguan Ning, Sauers Ronald R, Williams Lawrence J
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
J Am Chem Soc. 2006 May 3;128(17):5695-702. doi: 10.1021/ja057533y.
A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.
本文描述了一项关于硫代酸与叠氮化物形成酰胺的实验与计算相结合的机理研究。数据支持了两种不同的机理途径,这取决于叠氮化物组分的电子特性。相对富电子的叠氮化物通过阴离子加速的[3 + 2]环加成与硫代羧酸盐进行双分子偶联,生成硫代三唑啉。高度缺电子的叠氮化物通过叠氮化物末端氮与硫代羧酸盐的硫进行双分子结合,生成线性加合物。该中间体的环化生成硫代三唑啉。发现酰胺的分解是通过中性硫代三唑啉中间体的逆[3 + 2]环加成进行的。计算分析(DFT,6 - 31 + G(d))确定了两类叠氮化物与硫代酸进行[3 + 2]环加成生成硫代三唑啉中间体的途径,尽管这些途径的能量比硫代羧酸盐酰胺化的途径更高。这些研究还表明,缺电子叠氮化物的反应历程归因于一种先捕获机制,随后是分子内酰化。