Suppr超能文献

(H2O)n-团簇的电子束缚基序。

Electron binding motifs of (H2O)n- clusters.

作者信息

Sommerfeld Thomas, Jordan Kenneth D

机构信息

University of Pittsburgh, Department of Chemistry and Center for Molecular and Materials Simulations, Chevron Science Center, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Am Chem Soc. 2006 May 3;128(17):5828-33. doi: 10.1021/ja0587446.

Abstract

It is has been established that the excess electrons in small (i.e., n < or = 7) (H2O)n- clusters are bound in the dipole field of the neutral cluster and, thus, exist as surface states. However, the motifs for the binding of an excess electron to larger water clusters remain the subject of considerable debate. The prevailing view is that electrostatic interactions with the "free" OH bonds of the cluster dominate the binding of the excess electron in both small and large clusters. In the present study, a quantum Drude model is used to study selected (H2O)n- clusters in the n = 12-24 size range with the goal of elucidating different possible binding motifs. In addition to the known surface and cavity states, we identify a new binding motif, where the excess electron permeates the hydrogen-bonding network. It is found that electrostatic interactions dominate the binding of the excess electron only for isomers with large dipole moments, whereas in isomers without large dipole moments polarization and correlation effects dominate. Remarkably, for the network-permeating states, the excess electron binds even in the absence of electrostatic interactions.

摘要

已经确定,小尺寸(即n≤7)的(H2O)n - 团簇中的多余电子束缚在中性团簇的偶极场中,因此以表面态的形式存在。然而,多余电子与较大水团簇结合的模式仍然是大量争论的主题。普遍观点认为,与团簇“自由”OH键的静电相互作用在小团簇和大团簇中均主导着多余电子的结合。在本研究中,使用量子德鲁德模型研究n = 12 - 24尺寸范围内选定的(H2O)n - 团簇,目的是阐明不同的可能结合模式。除了已知的表面态和腔体态之外,我们还识别出一种新的结合模式,其中多余电子渗透到氢键网络中。研究发现,仅对于具有大偶极矩的异构体,静电相互作用主导多余电子的结合,而在没有大偶极矩的异构体中,极化和相关效应占主导。值得注意的是,对于网络渗透态,即使在没有静电相互作用的情况下,多余电子也能结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验