Suppr超能文献

人类前列腺细胞的转录组

Transcriptomes of human prostate cells.

作者信息

Oudes Asa J, Campbell Dave S, Sorensen Carrie M, Walashek Laura S, True Lawrence D, Liu Alvin Y

机构信息

Urology, University of Washington, Seattle, WA 98195-6510, USA.

出版信息

BMC Genomics. 2006 Apr 25;7:92. doi: 10.1186/1471-2164-7-92.

Abstract

BACKGROUND

The gene expression profiles of most human tissues have been studied by determining the transcriptome of whole tissue homogenates. Due to the solid composition of tissues it is difficult to study the transcriptomes of individual cell types that compose a tissue. To overcome the problem of heterogeneity we have developed a method to isolate individual cell types from whole tissue that are a source of RNA suitable for transcriptome profiling.

RESULTS

Using monoclonal antibodies specific for basal (integrin beta4), luminal secretory (dipeptidyl peptidase IV), stromal fibromuscular (integrin alpha 1), and endothelial (PECAM-1) cells, respectively, we separated the cell types of the prostate with magnetic cell sorting (MACS). Gene expression of MACS-sorted cell populations was assessed with Affymetrix GeneChips. Analysis of the data provided insight into gene expression patterns at the level of individual cell populations in the prostate.

CONCLUSION

In this study, we have determined the transcriptome profile of a solid tissue at the level of individual cell types. Our data will be useful for studying prostate development and cancer progression in the context of single cell populations within the organ.

摘要

背景

大多数人类组织的基因表达谱是通过测定全组织匀浆的转录组来研究的。由于组织的实体组成,很难研究构成组织的单个细胞类型的转录组。为了克服异质性问题,我们开发了一种从全组织中分离单个细胞类型的方法,这些细胞类型是适合转录组分析的RNA来源。

结果

分别使用针对基底细胞(整合素β4)、腔分泌细胞(二肽基肽酶IV)、基质纤维肌细胞(整合素α1)和内皮细胞(血小板内皮细胞黏附分子-1)的单克隆抗体,通过磁珠细胞分选(MACS)分离前列腺的细胞类型。用Affymetrix基因芯片评估MACS分选的细胞群体的基因表达。数据分析为前列腺中单个细胞群体水平的基因表达模式提供了见解。

结论

在本研究中,我们在单个细胞类型水平上确定了实体组织的转录组谱。我们的数据将有助于在器官内单个细胞群体的背景下研究前列腺发育和癌症进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9198/1553448/a87941e0a9f4/1471-2164-7-92-3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验