Zilles K, Qü M S, Schröder H, Schleicher A
Institut für Anatomie, Universität zu Köln.
J Hirnforsch. 1991;32(3):343-56.
Quantitative receptor autoradiography is a widely used technique for the demonstration of transmitter receptor distributions in anatomically defined brain regions. The present paper reviews some aspects of the relation between receptor distributions and cortical architecture in adult and early postnatal mammalian brains. 1. Changes in the distribution (mean density, laminar pattern) of transmitter receptors occur often at the borders of cyto- and myeloarchitectonically defined cortical areas. This corroborates the functional meaning of the classical cyto- and myeloarchitectonical parcellations. 2. Some, but not all receptor subtypes of one transmitter system and receptors of different transmitter systems show similar laminar patterns (codistribution) and colocalizations at the single cell level. Both aspects are important for a functional interpretation of cortical units (areas, layers, etc.) and neuronal cell types, because the interaction between numerous transmitters and their receptors is the neurochemical substrate of neurotransmission in vivo. Codistributions and colocalizations are prerequisites for such interactions. 3. Overshooting alpha 1-adrenoceptor production, heterochronous development of this receptor in the different layers of a cortical area, and different time tables of cortical histogenesis, increase in transmitter concentrations and local receptor maturation demonstrate that the processes regulating the development of transmitter receptors during postnatal ontogeny cannot be directly deduced from histogenetic events or transmitter maturation in the cortex. 4. Receptors of one transmitter (e.g., alpha 1-adrenoceptors) can be specifically associated with a neuronal projection system (e.g., hippocampal mossy fibers), which is using a different transmitter (e.g., L-glutamate). This points to complex interactions between different transmitter systems in an anatomically defined structure. Functional and architectonical cortical units (e.g., "barrels") show specific receptor distributions, and hitherto unknown modular structures (e.g., periodical concentrations of alpha 1-adrenoceptors in layer V of the rat posteromedial barrel subfield) can be visualized by quantitative receptor autoradiography combined with image analysis.
定量受体放射自显影术是一种广泛应用的技术,用于在解剖学上明确的脑区中显示递质受体的分布。本文综述了成年和出生后早期哺乳动物大脑中受体分布与皮质结构之间关系的一些方面。1. 递质受体分布(平均密度、分层模式)的变化经常发生在细胞构筑和髓鞘构筑所定义的皮质区域边界。这证实了经典细胞构筑和髓鞘构筑分区的功能意义。2. 一个递质系统的一些但并非所有受体亚型以及不同递质系统的受体在分层模式(共分布)和单细胞水平的共定位上表现出相似性。这两个方面对于皮质单位(区域、层等)和神经元细胞类型的功能解释都很重要,因为众多递质与其受体之间的相互作用是体内神经传递的神经化学基础。共分布和共定位是这种相互作用的先决条件。3. α1 -肾上腺素能受体产生过度、该受体在皮质区域不同层的异时发育以及皮质组织发生的不同时间表、递质浓度增加和局部受体成熟表明,在出生后个体发育过程中调节递质受体发育的过程不能直接从皮质的组织发生事件或递质成熟推导出来。4. 一种递质的受体(例如α1 -肾上腺素能受体)可以与一个使用不同递质(例如L -谷氨酸)的神经元投射系统(例如海马苔藓纤维)特异性相关。这表明在一个解剖学上明确的结构中不同递质系统之间存在复杂的相互作用。功能性和构筑性皮质单位(例如“桶状结构”)显示出特定的受体分布,并且通过定量受体放射自显影术结合图像分析可以可视化迄今未知的模块化结构(例如大鼠后内侧桶状亚区V层中α1 -肾上腺素能受体的周期性浓度)。