Losasso Frank, Irving Geoffrey, Guendelman Eran, Fedkiw Ron
Department of Computer Science, Stanford University, CA 94305, USA.
IEEE Trans Vis Comput Graph. 2006 May-Jun;12(3):343-52. doi: 10.1109/TVCG.2006.51.
We propose a novel technique for melting and burning solid materials, including the simulation of the resulting liquid and gas. The solid is simulated with traditional mesh-based techniques (triangles or tetrahedra) which enable robust handling of both deformable and rigid objects, collision and self-collision, rolling, friction, stacking, etc. The subsequently created liquid or gas is simulated with modern grid-based techniques, including vorticity confinement and the particle level set method. The main advantage of our method is that state-of-the-art techniques are used for both the solid and the fluid without compromising simulation quality when coupling them together or converting one into the other. For example, we avoid modeling solids as Eulerian grid-based fluids with high viscosity or viscoelasticity, which would preclude the handling of thin shells, self-collision, rolling, etc. Thus, our method allows one to achieve new effects while still using their favorite algorithms (and implementations) for simulating both solids and fluids, whereas other coupling algorithms require major algorithm and implementation overhauls and still fail to produce rich coupling effects (e.g., melting and burning solids).
我们提出了一种用于熔化和燃烧固体材料的新颖技术,包括对由此产生的液体和气体进行模拟。固体使用传统的基于网格的技术(三角形或四面体)进行模拟,该技术能够稳健地处理可变形和刚性物体、碰撞和自碰撞、滚动、摩擦、堆叠等。随后创建的液体或气体使用现代的基于网格的技术进行模拟,包括涡度限制和粒子水平集方法。我们方法的主要优点是,在将固体和流体耦合在一起或将一种转换为另一种时,最先进的技术用于固体和流体两者,而不会损害模拟质量。例如,我们避免将固体建模为具有高粘度或粘弹性的基于欧拉网格的流体,因为这会排除对薄壳、自碰撞、滚动等的处理。因此,我们的方法允许人们在仍然使用他们喜欢的算法(及其实现)来模拟固体和流体的同时实现新的效果,而其他耦合算法需要对算法和实现进行重大修改,并且仍然无法产生丰富的耦合效果(例如熔化和燃烧固体)。