Guo Xiaohu, Li Xin, Bao Yunfan, Gu Xianfeng, Qin Hong
Center for Visual Computing and Department of Computer Science, State University of New York at Stony Brook, NY 11794-4400, USA.
IEEE Trans Vis Comput Graph. 2006 May-Jun;12(3):375-85. doi: 10.1109/TVCG.2006.52.
This paper presents a new approach to the physically-based thin-shell simulation of point-sampled geometry via explicit, global conformal point-surface parameterization and meshless dynamics. The point-based global parameterization is founded upon the rigorous mathematics of Riemann surface theory and Hodge theory. The parameterization is globally conformal everywhere except for a minimum number of zero points. Within our parameterization framework, any well-sampled point surface is functionally equivalent to a manifold, enabling popular and powerful surface-based modeling and physically-based simulation tools to be readily adapted for point geometry processing and animation. In addition, we propose a meshless surface computational paradigm in which the partial differential equations (for dynamic physical simulation) can be applied and solved directly over point samples via Moving Least Squares (MLS) shape functions defined on the global parametric domain without explicit connectivity information. The global conformal parameterization provides a common domain to facilitate accurate meshless simulation and efficient discontinuity modeling for complex branching cracks. Through our experiments on thin-shell elastic deformation and fracture simulation, we demonstrate that our integrative method is very natural, and that it has great potential to further broaden the application scope of point-sampled geometry in graphics and relevant fields.
本文提出了一种新方法,通过显式的全局共形点 - 曲面参数化和无网格动力学,对基于点采样几何的物理薄壳模拟进行研究。基于点的全局参数化建立在黎曼曲面理论和霍奇理论的严格数学基础之上。除了最少数量的零点外,该参数化在任何地方都是全局共形的。在我们的参数化框架内,任何采样良好的点曲面在功能上都等同于一个流形,使得流行且强大的基于曲面的建模和基于物理的模拟工具能够轻松适用于点几何处理和动画制作。此外,我们提出了一种无网格曲面计算范式,其中偏微分方程(用于动态物理模拟)可以通过在全局参数域上定义的移动最小二乘(MLS)形状函数,直接应用于点样本并求解,而无需显式的连通性信息。全局共形参数化提供了一个公共域,便于对复杂分支裂纹进行精确的无网格模拟和高效的不连续建模。通过我们对薄壳弹性变形和断裂模拟的实验,我们证明了我们的集成方法非常自然,并且具有进一步拓宽点采样几何在图形学及相关领域应用范围的巨大潜力。