Kilic Ertugrul, Kilic Ulkan, Wang Yaoming, Bassetti Claudio L, Marti Hugo H, Hermann Dirk M
Department of Neurology, University Hospital Zurich, Frauenklinikstr. 26, CH-8091 Zurich, Switzerland.
FASEB J. 2006 Jun;20(8):1185-7. doi: 10.1096/fj.05-4829fje. Epub 2006 Apr 26.
Based on its trophic influence on neurons and vascular cells, vascular endothelial growth factor (VEGF) is a promising candidate for stroke treatment. VEGF's survival-promoting effects are purchased at the expense of an increased blood brain barrier permeability, which potentially compromises tissue survival. The mechanisms via which VEGF protects the brain against ischemia remained unknown. We examined signaling pathways underlying VEGF's neuroprotective activity in our transgenic mouse line, which expresses human VEGF165 under a neuron-specific enolase (NSE) promoter. We show that VEGF receptor-2 (Flk-1) is expressed on ischemic neurons and astrocytes and is activated by VEGF. Following 90-min episodes of middle cerebral artery occlusion, VEGF increased phosphorylated (but not total) Akt and ERK-1/-2 and reduced phosphorylated mitogen activated protein kinase/p38 and c-Jun NH2-terminal kinase (JNK)-1/-2 levels, at the same time decreasing inducible NO synthase expression in ischemic neurons. Inhibition of Akt with Wortmannin reversed VEGF's neuroprotective properties, diminished brain swelling, and restored the vascular permeability induced by VEGF to below levels in WT animals. The aggravation of brain injury by Wortmannin was associated with the restitution of p38, but not of JNK-1/-2, ERK-1/-2, or inducible NOS (iNOS). Our data demonstrate that VEGF mediates both neuroprotection and blood brain barrier permeability via the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Based on our observation that VEGF neuroprotection and vascular leakage depend on PI3K/Akt, which is putatively regulated by VEGF receptor-2, we predict that it may not easily be possible to make use of VEGF's neuroprotective function without accepting its unfavorable consequence, the increased vascular permeability.
基于其对神经元和血管细胞的营养作用,血管内皮生长因子(VEGF)是中风治疗的一个有前景的候选药物。VEGF的促存活作用是以血脑屏障通透性增加为代价的,这可能会损害组织存活。VEGF保护大脑免受缺血影响的机制尚不清楚。我们在我们的转基因小鼠品系中研究了VEGF神经保护活性的信号通路,该品系在神经元特异性烯醇化酶(NSE)启动子的控制下表达人VEGF165。我们发现VEGF受体-2(Flk-1)在缺血神经元和星形胶质细胞上表达,并被VEGF激活。在大脑中动脉闭塞90分钟后,VEGF增加了磷酸化(而非总)Akt和ERK-1/-2的水平,降低了磷酸化丝裂原活化蛋白激酶/p38和c-Jun氨基末端激酶(JNK)-1/-2的水平,同时降低了缺血神经元中诱导型一氧化氮合酶的表达。用渥曼青霉素抑制Akt可逆转VEGF的神经保护特性,减轻脑肿胀,并将VEGF诱导的血管通透性恢复到野生型动物的水平以下。渥曼青霉素加重脑损伤与p38的恢复有关,但与JNK-1/-2、ERK-1/-2或诱导型一氧化氮合酶(iNOS)无关。我们的数据表明,VEGF通过磷脂酰肌醇-3激酶(PI3K)/Akt途径介导神经保护和血脑屏障通透性。基于我们的观察,即VEGF的神经保护和血管渗漏依赖于PI3K/Akt,而PI3K/Akt可能受VEGF受体-2调控,我们预测,在不接受其不利后果——血管通透性增加的情况下,可能不容易利用VEGF的神经保护功能。