Bains R, Moe M C, Larsen G A, Berg-Johnsen J, Vinje M L
Institute for Surgical Research and Department of Neurosurgery, Rikshospitalet University Hospital, Oslo, Norway.
Acta Anaesthesiol Scand. 2006 May;50(5):572-9. doi: 10.1111/j.1399-6576.2006.00988.x.
The mitochondrial membrane potential (DeltaPsim) controls the generation of adenosine triphosphate (ATP) and reactive oxygen species, and sequesteration of intracellular Ca2+[Ca2+]i. Clinical concentrations of sevoflurane affect the DeltaPsim in neural mitochondria, but the mechanisms remain elusive. The aim of the present study was to compare the effect of isoflurane and sevoflurane on DeltaPsim in rat pre-synaptic terminals (synaptosomes), and to investigate whether these agents affect DeltaPsim by inhibiting the respiratory chain.
Synaptosomes were loaded with the fluorescent probes JC-1 (DeltaPsim) and Fura-2 ([Ca2+]i) and exposed to isoflurane or sevoflurane. The effect of the anaesthetics on the electron transport chain was investigated by blocking complex I and complex V.
Isoflurane 1 and 2 minimum alveolar concentration (MAC) decreased the normalized JC-1 ratio from 0.92 +/- 0.03 in control to 0.86 +/- 0.02 and 0.81 +/- 0.01, respectively, reflecting a depolarization of the mitochondrial membrane (n = 9). Isoflurane 2 MAC increased [Ca2+]i. In Ca2+-depleted medium, isoflurane still decreased DeltaPsim while [Ca2+]i remained unaltered. The effect of isoflurane was more pronounced than for sevoflurane. Blocking complex V of the respiratory chain enhanced the isoflurane- and sevoflurane-induced mitochondrial depolarization, whereas blocking complex I and V decreased DeltaPsim to the same extent in control, isoflurane and sevoflurane experiments.
Isoflurane and sevoflurane may act as metabolic inhibitors by depolarizing pre-synaptic mitochondria through inhibition of the electron transport chain, although isoflurane seems to inhibit mitochondrial function more significantly than sevoflurane. Both agents inhibit the respiratory chain sufficiently to cause ATP synthase reversal.
线粒体膜电位(ΔΨm)控制着三磷酸腺苷(ATP)的生成、活性氧的产生以及细胞内钙离子([Ca2+]i)的隔离。临床浓度的七氟醚会影响神经线粒体中的ΔΨm,但其机制仍不清楚。本研究的目的是比较异氟醚和七氟醚对大鼠突触前终末(突触体)中ΔΨm的影响,并研究这些药物是否通过抑制呼吸链来影响ΔΨm。
将突触体用荧光探针JC-1(ΔΨm)和Fura-2([Ca2+]i)装载,然后暴露于异氟醚或七氟醚中。通过阻断复合体I和复合体V来研究麻醉剂对电子传递链的影响。
1个和2个最低肺泡浓度(MAC)的异氟醚分别使标准化的JC-1比值从对照时的0.92±0.03降至0.86±0.02和0.81±0.01,这反映了线粒体膜的去极化(n = 9)。2个MAC的异氟醚使[Ca2+]i升高。在缺钙培养基中,异氟醚仍能降低ΔΨm,而[Ca2+]i保持不变。异氟醚的作用比七氟醚更明显。阻断呼吸链的复合体V可增强异氟醚和七氟醚诱导的线粒体去极化,而在对照、异氟醚和七氟醚实验中,阻断复合体I和V使ΔΨm降低到相同程度。
异氟醚和七氟醚可能通过抑制电子传递链使突触前线粒体去极化,从而作为代谢抑制剂发挥作用,尽管异氟醚似乎比七氟醚更显著地抑制线粒体功能。两种药物都能充分抑制呼吸链,导致ATP合酶逆转。