Suppr超能文献

来自石珊瑚鹿角杯形珊瑚的一种蛋白质的荧光变体可用于双色单激光荧光交叉相关光谱分析。

A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy.

作者信息

Kogure Takako, Karasawa Satoshi, Araki Toshio, Saito Kenta, Kinjo Masataka, Miyawaki Atsushi

机构信息

Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan.

出版信息

Nat Biotechnol. 2006 May;24(5):577-81. doi: 10.1038/nbt1207. Epub 2006 Apr 30.

Abstract

Dual-color fluorescence cross-correlation spectroscopy (FCCS) is a promising technique for quantifying protein-protein interactions. In this technique, two different fluorescent labels are excited and detected simultaneously within a common measurement volume. Difficulties in aligning two laser lines and emission crossover between the two fluorophores, however, make this technique complex. To overcome these limitations, we developed a fluorescent protein with a large Stokes shift. This protein, named Keima, absorbs and emits light maximally at 440 nm and 620 nm, respectively. Combining a monomeric version of Keima with cyan fluorescent protein allowed dual-color FCCS with a single 458-nm laser line and complete separation of the fluorescent protein emissions. This FCCS approach enabled sensitive detection of proteolysis by caspase-3 and the association of calmodulin with calmodulin-dependent enzymes. In addition, Keima and a spectral variant that emits maximally at 570 nm might facilitate simultaneous multicolor imaging with single-wavelength excitation.

摘要

双色荧光互相关光谱技术(FCCS)是一种用于定量蛋白质-蛋白质相互作用的很有前景的技术。在该技术中,两种不同的荧光标记在一个共同的测量体积内同时被激发和检测。然而,对准两条激光线以及两种荧光团之间的发射交叉的困难使得该技术变得复杂。为了克服这些限制,我们开发了一种具有大斯托克斯位移的荧光蛋白。这种名为Keima的蛋白分别在440nm和620nm处最大程度地吸收和发射光。将Keima的单体形式与青色荧光蛋白相结合,可使用单一的458nm激光线进行双色FCCS,并完全分离荧光蛋白的发射。这种FCCS方法能够灵敏地检测半胱天冬酶-3介导的蛋白水解作用以及钙调蛋白与钙调蛋白依赖性酶的结合。此外,Keima和一种在570nm处最大程度发射的光谱变体可能有助于单波长激发下的同步多色成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验