Booy Evan P, Johar Dina, Maddika Srilekha, Pirzada Hasan, Sahib Mickey M, Gehrke Iris, Loewen Shauna, Louis Sherif F, Kadkhoda Kamran, Mowat Michael, Los Marek
Manitoba Institute of Cell Biology,CancerCare Manitoba, University of Manitoba, ON6010-675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada.
Arch Immunol Ther Exp (Warsz). 2006 Mar-Apr;54(2):85-101. doi: 10.1007/s00005-006-0011-5. Epub 2006 Mar 24.
Gene amplification, over-expression, and mutation of growth factors, or the receptors themselves, causes increased signaling through receptor kinases, which has been implicated in many human cancers and is associated with poor prognosis. Tumor growth has been shown to be decreased by interrupting this process of extensive growth factor-mediated signaling by directly targeting either the surface receptor or the ligand and thereby preventing cell survival and promoting apoptosis. Monoclonal antibodies have long been eyed as a potential new class of therapeutics targeting cancer and other diseases. Antibody-based therapy initially entered clinical practice when trastuzumab/Herceptin became the first clinically approved drug against an oncogene product as a well-established blocking reagent for tumors with hyperactivity of epidermal growth factor signaling pathways. In the first part of this review we explain basic terms related to the development of antibody-based drugs, give a brief historic perspective of the field, and also touch on topics such as the "humanization of antibodie" or creation of hybrid antibodies. The second part of the review gives an overview of the clinical usage of bispecific antibodies and antibodies "armed" with cytotoxic agents or enzymes. Further within this section, cancer-specific, site-specific, or signaling pathway-specific therapies are discussed in detail. Among other antibody-based therapeutic products, we discuss: Avastin (bevacizumab), CG76030, Theragyn (pemtumomab), daclizumab (Zenapax), TriAb, MDX-210, Herceptin (trastuzumab), panitumumab (ABX-EGF), mastuzimab (EMD-72000), Erbitux (certuximab, IMC225), Panorex (edrecolomab), STI571, CeaVac, Campath (alemtuizumab), Mylotarg (gemtuzumab, ozogamicin), and many others. The end of the review deliberates upon potential problems associated with cancer immunotherapy.
生长因子或其受体本身的基因扩增、过表达和突变会导致受体激酶信号传导增加,这与许多人类癌症有关,并与预后不良相关。通过直接靶向表面受体或配体来中断这种广泛的生长因子介导的信号传导过程,已显示肿瘤生长会减少,从而防止细胞存活并促进细胞凋亡。长期以来,单克隆抗体一直被视为针对癌症和其他疾病的一类潜在新型治疗药物。当曲妥珠单抗/赫赛汀成为首个临床批准的针对癌基因产物的药物,作为表皮生长因子信号通路过度活跃肿瘤的成熟阻断试剂时,基于抗体的疗法首次进入临床实践。在本综述的第一部分,我们解释了与基于抗体的药物开发相关的基本术语,给出了该领域的简要历史回顾,并还涉及了诸如“抗体人源化”或杂交抗体的产生等主题。综述的第二部分概述了双特异性抗体以及“携带”细胞毒性剂或酶的抗体的临床应用。在本节中,还将进一步详细讨论癌症特异性、位点特异性或信号通路特异性疗法。在其他基于抗体的治疗产品中,我们讨论:阿瓦斯汀(贝伐单抗)、CG76030、Theragyn(培妥莫单抗)、达利珠单抗(赛尼哌)、TriAb、MDX - 210、赫赛汀(曲妥珠单抗)、帕尼单抗(ABX - EGF)、马妥珠单抗(EMD - 72000)、爱必妥(西妥昔单抗,IMC225)、帕诺单抗(edrecolomab)、STI571、CeaVac、Campath(阿仑单抗)、Mylotarg(吉妥单抗,奥佐米星)等等。综述结尾探讨了与癌症免疫疗法相关的潜在问题。