Suppr超能文献

Synthesis and utilization of a nonhydrolyzable phosphoadenosine phosphosulfate analog.

作者信息

Ng K, D'Souza M, Callahan L, Geller D H, Kearns A E, Lyle S, Schwartz N B

机构信息

Department of Pediatrics, Joseph P. Kennedy Jr. Mental Retardation Research Center, University of Chicago, Illinois 60637.

出版信息

Anal Biochem. 1991 Oct;198(1):60-7. doi: 10.1016/0003-2697(91)90506-o.

Abstract

3'-Phosphoadenosine 5'-phosphosulfate (PAPS) functions as the high-energy sulfate donor for sulfate ester synthesis in all higher organisms. This activated sulfate, like its adenosine 5'-phosphosulfate precursor, is both chemically labile and vulnerable to sulfohydrolase degradation. These obstacles have limited the utility of the native PAPS in the purification and mechanistic description of the numerous PAPS-utilizing enzymes. This paper describes the synthesis of the 2'- and 3'-isomers of a nonhydrolysable, and thus stable, PAPS analog, beta-methylene-PAPS, from the previously described beta-methylene-APS (L. Callahan et al., Anal. Biochem. 177, 67-71, 1989). The method involves phosphorylation of beta-methylene-APS with trimetaphosphate and separation of the resulting mixed 2'(3')-isomers by ion-pair reverse-phase HPLC. The utilization of this analog as an inhibitor of APS kinase and PAPS translocase, two of the numerous PAPS-utilizing activities, as well as an affinity ligand for purification of APS kinase, is described.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验