Suppr超能文献

酵母酿酒酵母中铁的还原和跨质膜电子传递。

Iron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae.

机构信息

Laboratoire de Biochimie des Porphyrines, Institut J. Monod, Tour 43, Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France.

出版信息

Plant Physiol. 1992 Oct;100(2):769-77. doi: 10.1104/pp.100.2.769.

Abstract

The ferri-reductase activity of whole cells of Saccharomyces cerevisiae (washed free from the growth medium) was markedly increased 3 to 6 h after transferring the cells from a complete growth medium (preculture) to an iron-deficient growth medium (culture). This increase was prevented by the presence of iron, copper, excess oxygen, or other oxidative agents in the culture medium. The cells with increased ferri-reductase activity had a higher reduced glutathione content and a higher capacity to expose exofacial sulfhydryl groups. Plasma membranes purified from those cells exhibited a higher reduced nicotinamide adenine phosphate (NADPH)-dependent ferri-reductase specific activity. However, the intracellular levels of NADPH, NADH, and certain organic acids of the tricarboxylic acids cycle were unchanged, and the activity of NADPH-generating enzymes was not increased. Addition of Fe(III)-EDTA to iron-deprived and iron-rich cells in resting suspension resulted in a decrease in intracellular reduced glutathione in the case of iron-deprived cells and in an increase in organic acids and a sudden oxidation of NADH in both types of cells. The depolarizing effect of Fe(3+) was more pronounced in iron-rich cells. The metabolic pathways that may be involved in regulating the trans-plasma membrane electron transfer in yeast are discussed.

摘要

酵母(从生长培养基中洗净)细胞的整体铁还原酶活性在将细胞从完全生长培养基(预培养)转移到缺铁生长培养基(培养)后 3 至 6 小时显着增加。这种增加被培养基中铁、铜、过量氧气或其他氧化剂的存在所阻止。具有增加的铁还原酶活性的细胞具有更高的还原型谷胱甘肽含量和更高的暴露细胞外巯基基团的能力。从这些细胞中纯化的质膜表现出更高的还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)依赖性铁还原酶比活性。然而,细胞内 NADPH、NADH 和三羧酸循环的某些有机酸的水平没有改变,并且 NADPH 生成酶的活性没有增加。将 Fe(III)-EDTA 添加到处于静止悬浮状态的缺铁和富铁细胞中,导致缺铁细胞内还原型谷胱甘肽减少,而在两种类型的细胞中,有机酸增加并且 NADH 突然氧化。Fe(3+) 的去极化效应在富铁细胞中更为明显。讨论了可能参与调节酵母质膜外电子转移的代谢途径。

相似文献

1
Iron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae.
Plant Physiol. 1992 Oct;100(2):769-77. doi: 10.1104/pp.100.2.769.
2
Iron-reductases in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 1990 Apr 19;1038(2):253-9. doi: 10.1016/0167-4838(90)90213-y.
4
Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.
J Biol Chem. 1995 Jan 6;270(1):128-34. doi: 10.1074/jbc.270.1.128.
5
Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
J Gen Microbiol. 1989 Feb;135(2):257-63. doi: 10.1099/00221287-135-2-257.
6
Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Nov;151(3):313-321. doi: 10.1016/j.cbpa.2007.03.025. Epub 2007 Mar 30.
7
Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
J Inorg Biochem. 1992;47(3-4):249-55. doi: 10.1016/0162-0134(92)84070-4.

引用本文的文献

1
Harnessing fungal bio-electricity: a promising path to a cleaner environment.
Front Microbiol. 2024 Jan 30;14:1291904. doi: 10.3389/fmicb.2023.1291904. eCollection 2023.
2
A holistic view of mammalian (vertebrate) cellular iron uptake.
Metallomics. 2020 Sep 23;12(9):1323-1334. doi: 10.1039/d0mt00065e.
3
Different characteristics between menadione and menadione sodium bisulfite as redox mediator in yeast cell suspension.
Biochem Biophys Rep. 2016 Mar 21;6:88-93. doi: 10.1016/j.bbrep.2016.03.007. eCollection 2016 Jul.
6
Nonreductive iron uptake mechanism in the marine alveolate Chromera velia.
Plant Physiol. 2010 Oct;154(2):991-1000. doi: 10.1104/pp.110.159947. Epub 2010 Aug 19.
8
Iron: Nutritious, Noxious, and Not Readily Available.
Plant Physiol. 1994 Mar;104(3):815-820. doi: 10.1104/pp.104.3.815.
9
Formation of Root Epidermal Transfer Cells in Plantago.
Plant Physiol. 1996 Jan;110(1):217-225. doi: 10.1104/pp.110.1.217.
10
Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.
J Bioenerg Biomembr. 1998 Oct;30(5):465-75. doi: 10.1023/a:1020542230308.

本文引用的文献

1
Fe uptake mechanism in fe-efficient cucumber roots.
Plant Physiol. 1990 Apr;92(4):908-11. doi: 10.1104/pp.92.4.908.
5
Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
J Gen Microbiol. 1989 Feb;135(2):257-63. doi: 10.1099/00221287-135-2-257.
6
Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae.
J Bioenerg Biomembr. 1982 Jun;14(3):191-205. doi: 10.1007/BF00745020.
7
Pentose phosphate pathway mutants of yeast.
Mol Gen Genet. 1982;185(2):367-8. doi: 10.1007/BF00330815.
9
The NADP(H) redox couple in yeast metabolism.
Antonie Van Leeuwenhoek. 1986;52(5):411-29. doi: 10.1007/BF00393469.
10
Decrease of NADH in yeast cells by external ferricyanide reduction.
Biochim Biophys Acta. 1986 Nov 5;852(1):25-9. doi: 10.1016/0005-2728(86)90052-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验