Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires, 1113-Buenos Aires, Argentina.
Plant Physiol. 1992 Nov;100(3):1263-8. doi: 10.1104/pp.100.3.1263.
The generation of active oxygen species by microsomes isolated from soybean seedlings was studied. NADPH-dependent superoxide anion production was 5.0 +/- 0.4 nmol . min(-1) mg(-1) of microsomal protein. Hydrogen peroxide generation by microsomes was 1.40 +/- 0.05 nmol . min(-1) mg(-1) of protein. Hydroxyl radical production, in the presence of ferric EDTA, evaluated through the generation of formaldehyde from dimethyl sulfoxide or tert-butyl alcohol was 0.50 +/- 0.04 and 0.44 +/- 0.03 nmol . min(-1) mg(-1), respectively. NADH proved to be suitable as cofactor for oxygen radical generation by microsomes from soybean seedlings. Because transition metals are implicated in radical generation by biological systems, the ability of microsomal membranes to reduce iron complexes was studied. Ferric ATP, ferric citrate, ferric ADP, ferric diethylenetriamine pentaacetic acid, and ferric EDTA were efficiently reduced in the presence of either NADPH or NADH as cofactor. The pattern of effectiveness of the different ferric complexes, on superoxide anion, hydrogen peroxide, and hydroxyl radical production, was similar to that found with animal microsomes. The data presented here indicate that microsomal ability to catalyze oxygen radical generation must be considered as an important contribution to cellular radical steady-state concentrations in cells from soybean seedlings.
研究了从大豆幼苗分离的微粒体产生活性氧物种的情况。NADPH 依赖性超氧阴离子的产生为 5.0 +/- 0.4 nmol.min(-1).mg(-1)的微粒体蛋白。微粒体产生的过氧化氢为 1.40 +/- 0.05 nmol.min(-1).mg(-1)的蛋白质。在存在铁 EDTA 的情况下,通过二甲基亚砜或叔丁醇生成甲醛来评估羟基自由基的产生,分别为 0.50 +/- 0.04 和 0.44 +/- 0.03 nmol.min(-1).mg(-1)。NADH 被证明是适合作为大豆幼苗微粒体产生氧自由基的辅助因子。由于过渡金属参与生物系统中的自由基生成,因此研究了微粒体膜还原铁配合物的能力。在 NADPH 或 NADH 作为辅助因子的存在下,铁 ATP、柠檬酸铁、铁 ADP、铁二乙三胺五乙酸和铁 EDTA 均能有效还原。不同铁配合物对超氧阴离子、过氧化氢和羟基自由基生成的有效性模式与动物微粒体相似。这里呈现的数据表明,微粒体催化氧自由基生成的能力必须被视为大豆幼苗细胞中细胞自由基稳态浓度的重要贡献。