Suppr超能文献

豌豆叶片谷氨酰胺合成酶:二价阳离子效应、底物特异性及其他性质。

Glutamine synthetase of pea leaves: divalent cation effects, substrate specificity, and other properties.

机构信息

Department of Biology, Carleton University, Ottawa, Canada.

出版信息

Plant Physiol. 1974 Nov;54(5):773-9. doi: 10.1104/pp.54.5.773.

Abstract

Purified glutamine synthetase from pea seedlings was most active with Mg(2+) as the metal activator, but Mn(2+) and Co(2+) were 45 to 60% and 30 to 45% as effective, respectively, when assayed at the optimal pH for each cation. The Mg(2+) saturation curve was quite sigmoid, and evidence indicates that MgATP is the active ATP substance. Co(2+) also gave a sigmoidal saturation curve, but when Mn(2+) was varied only slightly sigmoidal kinetics were seen. Addition of Mn(2+), Ca(2+), or Zn(2+) at low concentrations sharply inhibited the Mg(2+) -dependent activity, partially by shifting the pH optimum. Addition of Co(2+) did not inhibit Mg(2+)-dependent activity. The nucleotide triphosphate specificity changed markedly when Co(2+) or Mn(2+) replaced Mg(2+). Using the Mg(2+)-dependent assay, the Michaelis constant (Km) for NH(4) (+) was about 1.9 x 10(-3) M. The Km for l-glutamate was directly proportional to ATP concentration and ranged from 3.5 to 12.4 mm with the ATP levels tested. The Km for MgATP also varied with the l-glutamate concentration, ranging from 0.14 mm to 0.65 mm. Ethylenediaminetetracetic acid activated the enzyme by up to 54%, while sulfhydryl reagents gave slight activation, occasionally up to 34%.

摘要

从豌豆幼苗中纯化的谷氨酰胺合成酶以 Mg(2+)作为金属激活剂时活性最高,但在每种阳离子的最佳 pH 下测定时,Mn(2+)和 Co(2+)的活性分别为 45%至 60%和 30%至 45%。Mg(2+)饱和曲线呈明显的 S 形,有证据表明 MgATP 是活性 ATP 物质。Co(2+)也给出了 S 形饱和曲线,但当仅改变 Mn(2+)时,仅观察到稍微的 S 形动力学。在低浓度下添加 Mn(2+)、Ca(2+)或 Zn(2+)会强烈抑制 Mg(2+)-依赖性活性,部分原因是改变了 pH 最佳值。添加 Co(2+)不会抑制 Mg(2+)-依赖性活性。当 Co(2+)或 Mn(2+)取代 Mg(2+)时,核苷酸三磷酸特异性发生明显变化。使用 Mg(2+)-依赖性测定法,NH(4) (+)的米氏常数 (Km)约为 1.9 x 10(-3) M。l-谷氨酸的 Km 与 ATP 浓度直接成正比,在测试的 ATP 水平下,范围从 3.5 至 12.4 mm。MgATP 的 Km 也随 l-谷氨酸浓度而变化,范围从 0.14 mm 至 0.65 mm。乙二胺四乙酸通过高达 54%激活酶,而巯基试剂仅轻微激活,偶尔高达 34%。

相似文献

3
Pea leaf glutamine synthetase: regulatory properties.
Plant Physiol. 1975 Jun;55(6):968-74. doi: 10.1104/pp.55.6.968.
4
Some aspects of the kinetics of rat liver pyruvate carboxylase.
Biochem J. 1970 Nov;120(1):79-93. doi: 10.1042/bj1200079.
5
Purification and properties of glutamine synthetase from liver of Squalus acanthias.
Arch Biochem Biophys. 1985 May 15;239(1):248-59. doi: 10.1016/0003-9861(85)90833-1.
9
Glutamine synthetase from ovine brain is a manganese(II) enzyme.
Biochemistry. 1982 Dec 7;21(25):6389-96. doi: 10.1021/bi00268a011.

引用本文的文献

2
Genetic Diversity in Nitrogen Fertiliser Responses and N Gas Emission in Modern Wheat.
Front Plant Sci. 2022 May 4;13:816475. doi: 10.3389/fpls.2022.816475. eCollection 2022.
5
Glutamine synthetase activity in leaves of Zea mays L. as influenced by magnesium status.
Planta. 2015 Dec;242(6):1309-19. doi: 10.1007/s00425-015-2371-8. Epub 2015 Jul 23.
9

本文引用的文献

1
Studies on the Enzymatic Synthesis of Glutamine.
Plant Physiol. 1955 Sep;30(5):393-402. doi: 10.1104/pp.30.5.393.
3
The optical specificity of glutamine synthetase.
Arch Biochem Biophys. 1960 Sep;90:7-11. doi: 10.1016/0003-9861(60)90603-2.
4
The isolation and characterization of glutamic dehydrogenase from corn leaves.
Arch Biochem Biophys. 1956 May;62(1):173-83. doi: 10.1016/0003-9861(56)90100-x.
5
Regulation of glutamine synthetase. II. Patterns of feedback inhibition in microorganisms.
J Bacteriol. 1967 Mar;93(3):1045-55. doi: 10.1128/jb.93.3.1045-1055.1967.
7
Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli.
Arch Biochem Biophys. 1966 Sep 26;116(1):177-92. doi: 10.1016/0003-9861(66)90026-9.
8
Some coordination compounds in biochemistry.
Am Sci. 1971 Sep-Oct;59(5):586-92.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验