Suppr超能文献

测定大豆根系的水力和渗透性质。

Determination of hydraulic and osmotic properties of soybean root systems.

机构信息

Department of Botany, Duke University, Durham, North Carolina 27706.

出版信息

Plant Physiol. 1977 Jun;59(6):1013-20. doi: 10.1104/pp.59.6.1013.

Abstract

An analytical technique which allows the experimental determination of soybean (Glycine max L.) root properties is presented. Two major problems hamper the interpretation of experimental data. These are: (a) the influence of a possible boundary layer which raises the effective value of pi degrees above that of the bulk solution; and (b) the difficulty of obtaining an adequate measure of the internal osmotic pressure except at high values of volume flow rate due primarily to possible exchanges of solutes between the xylem and adjacent tissues. Consideration of these two problems leads to an interpretation of previous models which is reconcilable with the criticisms of Newman (Plant Physiology 1975 57: 738-739).In these experiments, estimates of hydraulic conductivity and reflection coefficient are based on high flow rate data where the osmotic effects are minimized. Because of the difficulties attached to the evaluation of pi(i), at low and moderate flow rates, any technique for evaluating root parameters which depends on knowledge of when the osmotic pressure difference (in bars) is zero will be subject to large errors, at least until both problems metioned above have been adequately resolved.An additional problem which must be dealt with in terminal root segments is the effect of a standing osmotic gradient. It is thought that this is not a serious problem in a complex root system.Transpiration rates are calculated on the basis of leaf and root surface areas and experimentally determined root volume flow. It is shown that root flow rates necessary to sustain high transpiration rates in the shoots are easily accommodated by the model at moderate levels of applied pressure difference.

摘要

一种可以用来测定大豆(Glycine max L.)根系特性的分析技术被提出。两个主要问题妨碍了实验数据的解释。这些问题是:(a)边界层的影响会导致有效值 pi 升高,超过了本体溶液的值;(b)由于木质部和相邻组织之间可能存在溶质交换,因此除了在高体积流速率下,很难获得内部渗透压的充分测量。考虑到这两个问题,就可以对以前的模型进行解释,使其与 Newman 的批评(《植物生理学》1975 年 57 卷:738-739)相协调。在这些实验中,水力传导率和反射系数的估计基于高流速数据,其中渗透压的影响最小。由于在低流速和中等流速下评估 pi(i)存在困难,因此任何依赖于何时渗透压差(以巴为单位)为零的根系参数评估技术都将存在很大误差,至少在上述两个问题得到充分解决之前是这样。在末端根段中还必须处理一个额外的问题,即静止渗透压梯度的影响。人们认为,在复杂的根系系统中,这不是一个严重的问题。蒸腾速率是基于叶片和根系表面积以及实验测定的根系体积流速来计算的。结果表明,在中等施加压力差下,维持 shoots 中高蒸腾速率所需的根系流速很容易被模型所容纳。

相似文献

2
Water uptake by roots: effects of water deficit.根系对水分的吸收:水分亏缺的影响
J Exp Bot. 2000 Sep;51(350):1531-42. doi: 10.1093/jexbot/51.350.1531.
5
Transpiration Reduction in Maize ( L) in Response to Soil Drying.玉米(L)对土壤干燥的蒸腾作用降低
Front Plant Sci. 2020 Jan 23;10:1695. doi: 10.3389/fpls.2019.01695. eCollection 2019.

引用本文的文献

本文引用的文献

8
The identification of congenital deafness.先天性耳聋的识别
Trans Am Acad Ophthalmol Otolaryngol. 1970 Nov-Dec;74(6):1208-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验