Birnberg P R, Hanson J B
Department of Botany, University of Illinois, Urbana, Illinois 61801.
Plant Physiol. 1983 Apr;71(4):803-9. doi: 10.1104/pp.71.4.803.
Previous work (Birnberg, Jayroe, Hanson 1982 Plant Physiol 70: 511-516) demonstrated that corn mitochondria (Zea mays L.) can accumulate citrate by a malate- and phosphate-independent proton symporter. This uptake and symport of other ions were investigated. Passive swelling experiments indicated that corn mitochondria can accumulate several other anions by proton symport, but only isocitrate is taken up nearly as effectively as citrate. At the optimal pH (4.5), active uptake of carrier-free [(14)C]citrate in 50 micromolar mersalyl is inhibited by fourteen anions, but only the I(50) (the concentration of inhibitor required to reduce uptake of carrier-free [(14)C]citrate by 50%) values of citrate (0.08 millimolar) and d-and l-isocitrate (0.5 millimolar) are less than 4 millimolar. Isocitrate is a competitive inhibitor of citrate uptake and [(14)C]isocitrate is accumulated with a K(m) similar similar to its I(50). Valinomycin reduces net active citrate accumulation at pH 7.5, consistent with the relatively low V(max) for citrate uptake. At pH 4.5, mersalyl reduces the rate of citrate uptake without changing the affinity of the carrier for citrate. Thus, the corn mitochondria have a high-affinity, mersalyl-insensitive carrier selective for citrate that also transports isocitrate.The pH optimum for oxidation of both endogenous substrates and citrate is approximately pH 6.8, but citrate oxidation is low at all pH values and is poorly coupled to ATP synthesis. Under active conditions only, at pH 7.0, malate/citrate exchange occurs with 4 millimolar malate being sufficient to remove about half the matrix citrate. Therefore, in vivo both citrate uptake by proton symport and efflux by malate/citrate exchange should occur, with the net direction of citrate movement determined by the cytoplasmic pH, and citrate and malate concentrations; in most cases, net efflux is likely to be favored.
先前的研究工作(Birnberg、Jayroe、Hanson,1982年,《植物生理学》70卷:511 - 516页)表明,玉米线粒体(玉米)能够通过一种不依赖苹果酸和磷酸盐的质子同向转运体积累柠檬酸。对其他离子的这种摄取和同向转运进行了研究。被动肿胀实验表明,玉米线粒体能够通过质子同向转运积累其他几种阴离子,但只有异柠檬酸的摄取效率几乎与柠檬酸相同。在最佳pH值(4.5)下,50微摩尔汞撒利中无载体的[¹⁴C]柠檬酸的主动摄取受到14种阴离子的抑制,但只有柠檬酸(0.08毫摩尔)和d - 异柠檬酸及l - 异柠檬酸(0.5毫摩尔)的半数抑制浓度(即降低无载体的[¹⁴C]柠檬酸摄取50%所需的抑制剂浓度)值小于4毫摩尔。异柠檬酸是柠檬酸摄取的竞争性抑制剂,[¹⁴C]异柠檬酸的积累具有与其半数抑制浓度相似的米氏常数。缬氨霉素在pH 7.5时降低柠檬酸的净主动积累,这与柠檬酸摄取相对较低的最大反应速度一致。在pH 4.5时,汞撒利降低柠檬酸摄取速率而不改变载体对柠檬酸的亲和力。因此,玉米线粒体具有一种对柠檬酸具有高亲和力、对汞撒利不敏感的载体,该载体也能转运异柠檬酸。内源性底物和柠檬酸氧化的最佳pH值约为6.8,但柠檬酸氧化在所有pH值下都较低,且与ATP合成的偶联效果不佳。仅在活跃条件下于pH 7.0时,苹果酸/柠檬酸交换发生,4毫摩尔苹果酸足以去除约一半的基质柠檬酸。因此,在体内,通过质子同向转运摄取柠檬酸以及通过苹果酸/柠檬酸交换流出柠檬酸都应该会发生,柠檬酸移动的净方向由细胞质pH值以及柠檬酸和苹果酸浓度决定;在大多数情况下,净流出可能占优势。