Suppr超能文献

菜豆淀粉和蔗糖的合成受光、CO(2)和脱落酸的影响。

Starch and Sucrose Synthesis in Phaseolus vulgaris as Affected by Light, CO(2), and Abscisic Acid.

机构信息

Biological Sciences Center, Desert Research Institute, P. O. Box 60220, Reno, Nevada 89506.

出版信息

Plant Physiol. 1985 Mar;77(3):617-20. doi: 10.1104/pp.77.3.617.

Abstract

Phaseolus vulgaris L. leaves were subjected to various light, CO(2), and O(2) levels and abscisic acid, then given a 10 minute pulse of (14)CO(2) followed by a 5 minute chase with unlabeled CO(2). After the chase period, very little label remained in the ionic fractions (presumed to be mostly carbon reduction and carbon oxidation cycle intermediates and amino acids) except at low CO(2) partial pressure. Most label was found in the neutral, alcohol soluble fraction (presumed sucrose) or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate (slope = 0.35). Starch formation increased linearly with assimilation rate (slope = 0.56) but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO(2) in combination with low O(2) (thought to disrupt control of carbon metabolism) caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO(2) assimilation, with sucrose the preferred product at very low assimilation rates.

摘要

菜豆叶片置于不同光照、CO2 和 O2 水平及脱落酸条件下,经 10 分钟 (14)CO2 脉冲标记后,再用未标记的 CO2 追测 5 分钟。在追测期后,除 CO2 分压很低时外,很少有放射性标记留在离子部分(推测主要为碳还原和碳氧化循环中间产物和氨基酸)。大多数标记位于中性、醇溶性部分(推测为蔗糖)或可被淀粉酶消化的不溶部分。蔗糖的形成与同化率呈线性相关(斜率=0.35)。淀粉的形成随同化率呈线性增加(斜率=0.56),但当同化率低于 4 微摩尔/平方米/秒时则不会发生。脱落酸或高 CO2 与低 O2(被认为会破坏碳代谢的控制)联合作用均不会导致蔗糖/淀粉形成比例的显著变化。这些研究表明,淀粉和蔗糖合成的途径均受净 CO2 同化率的控制,在非常低的同化率下,蔗糖是首选产物。

相似文献

引用本文的文献

5
The end game(s) of photosynthetic carbon metabolism.
Plant Physiol. 2024 Apr 30;195(1):67-78. doi: 10.1093/plphys/kiad601.
8
Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2121531119. doi: 10.1073/pnas.2121531119. Epub 2022 Mar 8.
9
Metabolism is a major driver of hydrogen isotope fractionation recorded in tree-ring glucose of Pinus nigra.
New Phytol. 2022 Apr;234(2):449-461. doi: 10.1111/nph.18014. Epub 2022 Feb 26.
10
Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves.
Metab Eng. 2022 Jan;69:231-248. doi: 10.1016/j.ymben.2021.12.003. Epub 2021 Dec 14.

本文引用的文献

2
Nonstomatal Inhibition of Net CO(2) Uptake by (+/-) Abscisic Acid in Pharbitis nil.
Plant Physiol. 1983 Nov;73(3):529-33. doi: 10.1104/pp.73.3.529.
3
Role of sucrose-phosphate synthase in partitioning of carbon in leaves.
Plant Physiol. 1983 Apr;71(4):818-21. doi: 10.1104/pp.71.4.818.
4
Kinetic characterization of spinach leaf sucrose-phosphate synthase.
Plant Physiol. 1982 May;69(5):1027-30. doi: 10.1104/pp.69.5.1027.
6
Effects of light intensity and oxygen on photosynthesis and translocation in sugar beet.
Plant Physiol. 1974 Oct;54(4):575-8. doi: 10.1104/pp.54.4.575.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验