Suppr超能文献

野生葡萄木质部导管的春季充盈

Spring filling of xylem vessels in wild grapevine.

作者信息

Sperry J S, Holbrook N M, Zimmermann M H, Tyree M T

机构信息

Department of Botany, University of Vermont, Burlington, Vermont 05405.

出版信息

Plant Physiol. 1987 Feb;83(2):414-7. doi: 10.1104/pp.83.2.414.

Abstract

Xylem vessels in grapevines Vitis labrusca L. and Vitis riparia Michx. growing in New England contained air over winter and yet filled with xylem sap and recovered their maximum hydraulic conductance during the month before leaf expansion in late May. During this period root pressures between 10 and 100 kilopascals were measured. Although some air in vessels apparently dissolved in ascending xylem sap, results indicated that some is pushed out of vessels and then out of the vine. Air in the vessel network distal to advancing xylem sap was compressed at about 3 kilopascals; independent measurements indicated this was sufficient to push air across vessel ends, and from vessels to the exterior through dead vine tips, inflorescence scars, and points on the bark. Once wetted, vessel ends previously air-permeable at 3 kilopascals remained sealed against air at pressures up to 2 and 3 megapascals. Permeability at 3 kilopascals was restored by dehydrating vines below -2.4 megapascals. We suggest that the decrease in permeability with hydration is due to formation of water films across pores in intervascular pit membranes; this water seal can maintain a pressure difference of roughly 2 megapascals, and prevents cavitation by aspirated air at xylem pressures less negative than -2.4 megapascals.

摘要

生长在新英格兰地区的美洲葡萄(Vitis labrusca L.)和河岸葡萄(Vitis riparia Michx.)的木质部导管在冬季含有空气,但在五月下旬叶片展开前的一个月内充满了木质部汁液,并恢复了最大水力导度。在此期间,测得的根压在10至100千帕之间。虽然导管中的一些空气显然溶解在上升的木质部汁液中,但结果表明,一些空气被挤出导管,然后排出葡萄藤。在前进的木质部汁液远端的导管网络中的空气在约3千帕的压力下被压缩;独立测量表明,这足以将空气推过导管末端,并从导管通过枯死的葡萄藤梢、花序疤痕和树皮上的点排出到外部。一旦湿润,先前在3千帕时透气的导管末端在高达2和3兆帕的压力下仍能防止空气进入。通过将葡萄藤脱水至-2.4兆帕以下,可恢复3千帕时的渗透性。我们认为,随着水分增加渗透性降低是由于在细胞间纹孔膜的孔隙上形成了水膜;这种水封可以维持大约2兆帕的压力差,并防止在木质部压力小于-2.4兆帕时被吸入的空气导致空穴化。

相似文献

1
Spring filling of xylem vessels in wild grapevine.
Plant Physiol. 1987 Feb;83(2):414-7. doi: 10.1104/pp.83.2.414.
2
Mechanism of water stress-induced xylem embolism.
Plant Physiol. 1988 Nov;88(3):581-7. doi: 10.1104/pp.88.3.581.
9
Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species.
New Phytol. 2012 Feb;193(3):713-720. doi: 10.1111/j.1469-8137.2011.03984.x. Epub 2011 Dec 7.
10
Young grapevines exhibit interspecific differences in hydraulic response to freeze stress but not in recovery.
Planta. 2019 Aug;250(2):495-505. doi: 10.1007/s00425-019-03183-6. Epub 2019 May 14.

引用本文的文献

1
Xylem embolism refilling revealed in stems of a weedy grass.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2420618122. doi: 10.1073/pnas.2420618122. Epub 2025 Mar 20.
2
Plant ultrasound detection: a cost-effective method for identifying plant ultrasonic emissions.
Plant Signal Behav. 2024 Dec 31;19(1):2310974. doi: 10.1080/15592324.2024.2310974. Epub 2024 Feb 12.
4
Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to Resistance?
Pathogens. 2023 Jun 12;12(6):825. doi: 10.3390/pathogens12060825.
5
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn?
Life (Basel). 2023 Feb 15;13(2):533. doi: 10.3390/life13020533.
6
Drought-Induced Root Pressure in .
Front Plant Sci. 2021 Feb 3;12:571072. doi: 10.3389/fpls.2021.571072. eCollection 2021.
7
8
Hydraulic Coupling of a Leafless Kauri Tree Remnant to Conspecific Hosts.
iScience. 2019 Sep 27;19:1238-1247. doi: 10.1016/j.isci.2019.05.009. Epub 2019 Jul 25.
9
Young grapevines exhibit interspecific differences in hydraulic response to freeze stress but not in recovery.
Planta. 2019 Aug;250(2):495-505. doi: 10.1007/s00425-019-03183-6. Epub 2019 May 14.

本文引用的文献

2
The Rise of Sap in Tall Grapevines.
Plant Physiol. 1955 Mar;30(2):93-104. doi: 10.1104/pp.30.2.93.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验