Department of Agronomy and Range Science, University of California, Davis, California 95616.
Plant Physiol. 1990 Apr;92(4):983-9. doi: 10.1104/pp.92.4.983.
Some Rhizobium bacteria have H(2)-uptake (Hup) systems that oxidize H(2) evolved from nitrogenase in leguminous root nodules. Pea (Pisum sativum L.) cultivars ;JI1205' and ;Alaska' produce high Hup (Hup(++)) and moderate Hup (Hup(+)) phenotypes, respectively, in Rhizobium leguminosarum 128C53. The physiological significance and biochemical basis of this host plant genetic effect are unknown. The purpose of this investigation was to advance basic Hup studies by developing nearly isogenic lines of peas that alter Hup phenotypes in R. leguminosarum strains containing hup genes. Eight pairs of nearly isogenic pea lines that produce Hup(++) and Hup(+) phenotypes in R. leguminosarum 128C53 were identified in 173 F(2)-derived F(6) families produced from crosses between JI1205 and Alaska. Tests with the pea isolines and three strains of hup-containing R. leguminosarum showed that the isolines altered Hup activity significantly (P </= 0.05) in 19 of 24 symbiotic combinations. Analyses of Hup phenotypes in F(6) families, the F(1) population, and two backcrosses suggested involvement of a single genetic locus. Three of the eight pairs of isolines were identified as being suitable for physiological studies, because the two lines in each pair showed similar growth, N assimilation, and flowering traits under nonsymbiotic conditions. Tests of those lines under N(2)-dependent conditions with isogenic Hup(+) and negligible Hup (Hup(-)) mutants of R. leguminosarum 128C53 showed that, in symbioses with Hup(+) rhizobia, two out of three Hup(++) pea lines decreased N(2) fixation relative to Hup(+) peas. In one of those cases, however, the Hup(++) plant line also decreased fixation by Hup(-) rhizobia. When results were averaged across all rhizobia tested, Hup(+) pea isolines had 8.2% higher dry weight (P </= 0.05) and fixed 12.6% more N(2) (P </= 0.05) than Hup(++) isolines. Pea lines described here may help identify host plant factors that influence rhizobial Hup activity and should assist in clarifying how Hup systems influence other physiological processes.
一些根瘤菌具有 H(2)-摄取(Hup)系统,可氧化豆科根瘤中固氮酶产生的 H(2)。豌豆(Pisum sativum L.)品种 'JI1205' 和 'Alaska' 在根瘤菌 leguminosarum 128C53 中分别产生高 Hup(Hup(++)) 和中等 Hup(Hup(+)) 表型。这种宿主植物遗传效应的生理意义和生化基础尚不清楚。本研究的目的是通过开发改变含有 hup 基因的根瘤菌中 Hup 表型的近等基因豌豆系,推进基本的 Hup 研究。从 JI1205 和 Alaska 之间的杂交产生的 173 个 F(2)衍生 F(6)家系中鉴定出 8 对产生 Hup(++)和 Hup(+)表型的近等基因豌豆系,这些家系在根瘤菌 128C53 中产生。用豌豆近等基因系和 3 株含有 hup 的根瘤菌进行测试表明,这些近等基因系在 24 个共生组合中的 19 个中显著改变了 Hup 活性(P </= 0.05)。对 F(6)家系、F(1)群体和两次回交中的 Hup 表型分析表明,单个遗传位点参与其中。在非共生条件下,8 对近等基因系中的 3 对被鉴定为适合生理研究,因为每对中的两条线表现出相似的生长、氮同化和开花特征。用根瘤菌 128C53 的同基因 Hup(+)和可忽略的 Hup(-)突变体在 N(2)-依赖性条件下对这些系进行测试表明,在与 Hup(+)根瘤菌的共生中,3 个 Hup(++)豌豆系中的 2 个相对于 Hup(+)豌豆系减少了 N(2)固定。然而,在其中一种情况下,Hup(++)植物系也减少了 Hup(-)根瘤菌的固定。当对所有测试的根瘤菌进行平均时,Hup(+)豌豆近等基因系的干重高 8.2%(P </= 0.05),固定的 N(2)多 12.6%(P </= 0.05)。这里描述的豌豆系可能有助于鉴定影响根瘤菌 Hup 活性的宿主植物因素,并有助于澄清 Hup 系统如何影响其他生理过程。