Suppr超能文献

测试六聚体解旋酶的空间排阻模型:改变转录终止因子Rho的RNA-DNA解旋的底物特征。

Testing the steric exclusion model for hexameric helicases: substrate features that alter RNA-DNA unwinding by the transcription termination factor Rho.

作者信息

Walmacq Céline, Rahmouni A Rachid, Boudvillain Marc

机构信息

Centre de Biophysique Moléculaire (UPR4301), CNRS, rue Charles Sadron, 45071 Orléans Cedex 2, France.

出版信息

Biochemistry. 2006 May 9;45(18):5885-95. doi: 10.1021/bi0600648.

Abstract

Typical hexameric helicases form ring-shaped structures involved in DNA replication. These enzymes have been proposed to melt forked DNA substrates by binding to, and pulling, one strand within their central channel, while the other strand is forced outside of the hexamer by steric exclusion and specific contacts with the outer ring surface. Transcription termination factor Rho also assembles into ring-shaped hexamers that are capable to use NTP-derived energy to unwind RNA and RNA-DNA helices. To delineate the potential relationship between helicase structural organization and unwinding mechanism, we have performed in vitro Rho helicase experiments with model substrates containing an RNA-DNA helix downstream from a Rho loading site. We show that a physical discontinuity (nick) inhibits RNA-DNA unwinding when present in the RNA but not in the DNA strand. Moreover, the presence of a 3'-overhanging DNA tail (Y-shaped substrate) does not affect initial Rho binding but can impair helicase activity. This inhibitory effect varies with the length of the tail, is independent of the identity (A or U) of the tail residues, and is also obtained when a biotin-streptavidin complex replaces the single-stranded DNA arm. However, it is readily relaxed upon moving the reporter RNA-DNA helix farther from the Rho loading site. The data indicate that the Rho helicase uses a steric exclusion mechanism whereby the initial formation of a productive Rho-transcript complex is a crucial rate-limiting event, while no specific interactions with the displaced strand are required. These results outline significant similarities as well as some differences in the mechanism of unwinding between Rho and other hexameric helicases which are discussed in relation with the biological function of the Rho helicase.

摘要

典型的六聚体解旋酶形成参与DNA复制的环形结构。有人提出,这些酶通过结合并拉动其中心通道内的一条链来解开叉状DNA底物,而另一条链则通过空间排斥和与外环表面的特异性接触被挤出六聚体。转录终止因子Rho也组装成环形六聚体,能够利用NTP衍生的能量解开RNA和RNA-DNA螺旋。为了阐明解旋酶结构组织与解旋机制之间的潜在关系,我们用含有位于Rho加载位点下游的RNA-DNA螺旋的模型底物进行了体外Rho解旋酶实验。我们发现,当RNA链中存在物理间断(切口)时会抑制RNA-DNA解旋,而DNA链中存在则不会。此外,3'-突出的DNA尾巴(Y形底物)的存在不影响Rho的初始结合,但会损害解旋酶活性。这种抑制作用随尾巴长度而变化,与尾巴残基的身份(A或U)无关,当生物素-链霉亲和素复合物取代单链DNA臂时也会出现这种情况。然而,将报告RNA-DNA螺旋移离Rho加载位点时,这种抑制作用很容易得到缓解。数据表明,Rho解旋酶使用空间排斥机制,即高效Rho-转录本复合物的初始形成是关键的限速事件,而不需要与被置换链进行特异性相互作用。这些结果概述了Rho与其他六聚体解旋酶在解旋机制上的显著相似性和一些差异,并结合Rho解旋酶的生物学功能进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验