Do Thuy Duong, Figueroa-Bossi Nara, Black Johnathan C, Eveno Eric, Delaleau Mildred, Bossi Lionello, Boudvillain Marc
Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, 45071 Orléans cedex 2, France.
ED 549, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, 45067 Orléans Cedex 2, France.
RNA. 2025 Aug 18;31(9):1207-1234. doi: 10.1261/rna.080486.125.
The bacterial transcription termination factor Rho is a rare example of an RNA helicase that functions as a ring-shaped ATP-powered six-subunit motor. Recent studies have linked Rho's distinctive architecture to a variety of regulatory mechanisms that shape the bacterial transcriptome at the global scale and control the transcription of individual genes in a context-dependent manner. In this review, we provide a comprehensive overview of the molecular mechanisms by which Rho triggers transcription termination. We examine the two prevailing modes of Rho's action: the "catch-up" mode, where Rho actively translocates along RNA and collides with the RNA polymerase to terminate transcription, and the "stand-by" mode where Rho, recruited by transcription elongation factor NusG, remains poised to engage RNA polymerase at specific sites or under particular constraints. Additionally, we highlight Rho's interplay with nucleoid-structuring protein H-NS in the regulation of bacterial chromatin transcription, as well as the crucial role played by Rho in the conditional regulation of specific genomic loci. We discuss how these mechanisms contribute to the fine-tuning of gene activity and integrate into broader regulatory networks, supporting bacterial adaptation to environmental changes and resilience to external challenges.
细菌转录终止因子Rho是一种罕见的RNA解旋酶,它作为一种环状的、由ATP驱动的六亚基马达发挥作用。最近的研究将Rho独特的结构与多种调控机制联系起来,这些机制在全球范围内塑造细菌转录组,并以上下文依赖的方式控制单个基因的转录。在这篇综述中,我们全面概述了Rho触发转录终止的分子机制。我们研究了Rho作用的两种主要模式:“追赶”模式,即Rho沿着RNA主动移位并与RNA聚合酶碰撞以终止转录;以及“待命”模式,即由转录延伸因子NusG招募的Rho,随时准备在特定位点或特定限制条件下与RNA聚合酶结合。此外,我们强调了Rho在细菌染色质转录调控中与类核结构蛋白H-NS的相互作用,以及Rho在特定基因组位点的条件性调控中所起的关键作用。我们讨论了这些机制如何有助于基因活性的微调,并融入更广泛的调控网络,支持细菌对环境变化的适应和对外部挑战的抵御能力。