McLean Douglas R, Graham Bruce P
Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK.
Math Med Biol. 2006 Jun;23(2):101-17. doi: 10.1093/imammb/dql010. Epub 2006 May 3.
We have developed a continuum partial differential equation model of tubulin-driven neurite elongation and solved the steady problem. For non-zero values of the decay coefficient, the authors identified three different regimes of steady neurite growth, small, moderate and large, dependent on the strength of the tubulin flux into the neurite at the soma. Solution of the fully time-dependent moving boundary problem is, however, hampered by its analytical intractibility. A linear instability analysis, novel to moving boundary problems in this context, is possible and reduces to finding the zeros of an eigen-condition function. One of the system parameters is small and this permits solutions to the eigen-condition equation in terms of asymptotic series in each growth regime. Linear instability is demonstrated to be absent from the neurite growth model and a Newton-Raphson root-finding algorithm is then shown to corroborate the asymptotic results for some selected examples. By numerically integrating the fully non-linear time-dependent system, we show how the steady solutions are non-linearly stable in each of the three growth regimes with decay and oscillatory behaviour being as predicted by the linear eigenvalue analysis.
我们开发了一种微管蛋白驱动的神经突伸长的连续偏微分方程模型,并求解了稳态问题。对于非零衰减系数值,作者确定了三种不同的稳态神经突生长模式,即小、中、大模式,这取决于微管蛋白在胞体处流入神经突的通量强度。然而,完全依赖时间的移动边界问题的求解因其解析上的难处理性而受阻。在这种情况下,一种针对移动边界问题的新型线性稳定性分析是可行的,它简化为寻找一个本征条件函数的零点。系统参数之一很小,这使得在每个生长模式下都可以根据渐近级数求解本征条件方程。结果表明神经突生长模型不存在线性不稳定性,然后通过牛顿 - 拉夫逊求根算法对一些选定的例子证实了渐近结果。通过对完全非线性的依赖时间的系统进行数值积分,我们展示了稳态解在三种具有衰减的生长模式中的每一种中如何是非线性稳定的,并且振荡行为正如线性特征值分析所预测的那样。