Diehl S, Henningsson E, Heyden A, Perna S
Centre for Mathematical Sciences, Lund University, P.O. Box 118, S-221 00 Lund, Sweden.
J Theor Biol. 2014 Oct 7;358:194-207. doi: 10.1016/j.jtbi.2014.06.019. Epub 2014 Jun 21.
A one-dimensional continuum-mechanical model of axonal elongation due to assembly of tubulin dimers in the growth cone is presented. The conservation of mass leads to a coupled system of three differential equations. A partial differential equation models the dynamic and the spatial behaviour of the concentration of tubulin that is transported along the axon from the soma to the growth cone. Two ordinary differential equations describe the time-variation of the concentration of free tubulin in the growth cone and the speed of elongation. All steady-state solutions of the model are categorized. Given a set of the biological parameter values, it is shown how one easily can infer whether there exist zero, one or two steady-state solutions and directly determine the possible steady-state lengths of the axon. Explicit expressions are given for each stationary concentration distribution. It is thereby easy to examine the influence of each biological parameter on a steady state. Numerical simulations indicate that when there exist two steady states, the one with shorter axon length is unstable and the longer is stable. Another result is that, for nominal parameter values extracted from the literature, in a large portion of a fully grown axon the concentration of free tubulin is lower than both concentrations in the soma and in the growth cone.
提出了一种由于微管蛋白二聚体在生长锥中组装而导致轴突伸长的一维连续介质力学模型。质量守恒导致了一个由三个微分方程组成的耦合系统。一个偏微分方程对沿着轴突从胞体运输到生长锥的微管蛋白浓度的动态和空间行为进行建模。两个常微分方程描述了生长锥中游离微管蛋白浓度的时间变化和伸长速度。对该模型的所有稳态解进行了分类。给定一组生物学参数值,展示了如何轻松推断是否存在零个、一个或两个稳态解,并直接确定轴突可能的稳态长度。给出了每个静态浓度分布的显式表达式。由此很容易研究每个生物学参数对稳态的影响。数值模拟表明,当存在两个稳态时,轴突长度较短的那个是不稳定的,而较长的那个是稳定的。另一个结果是,对于从文献中提取的标称参数值,在大部分完全生长的轴突中,游离微管蛋白的浓度低于胞体和生长锥中的浓度。