Suppr超能文献

Molecular blending by polymerization of intercalated solvent. Poly(gamma-benzyl-L-glutamate)/benzyl methacrylate as a model system.

作者信息

van Hooy-Corstjens C S J, Rastogi S

机构信息

Faculty of Medicine, University of Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands.

出版信息

Biomacromolecules. 2006 May;7(5):1542-50. doi: 10.1021/bm050817q.

Abstract

The aim of the present research is to obtain blending between a polymer and a (polymerized) solvent on the molecular level. Because of its rigid rod structure, poly(gamma-benzyl-L-glutamate) (PBLG) is chosen as the polymer. Benzyl methacrylate (BzMA) has been chosen as the solvent for two reasons. First, the structure of the solvent is very similar to the structure of the side chain of PBLG, favoring interactions between the two materials. Second, the solvent can be polymerized, because of the presence of a C=C bond. In cast films of PBLG and BzMA separate zones of the polymer and solvent are present. Wide-angle X-ray diffraction and Raman results show that upon heating the cast films homogenization occurs and solvent molecules intercalate between the helices of PBLG. At 150 degrees C a hexagonal packing is obtained. The dimensions of the obtained packing depend on the solvent concentration, which confirms that solvent molecules are indeed present within the crystalline lattice. DSC experiments imply that the observed changes upon heating correspond to thermodynamic processes. On cooling the homogeneous samples, disordering of the hexagonal packing occurs. Polymerization of the homogeneous samples results in a disordering of the hexagonal packing and in a contraction of the unit cell. The latter once more confirms that solvent molecules are indeed present within the crystalline lattice. The applied principle of polymerization of a solvent in a molecular homogeneous system can be favorable for many applications, for which morphology control at the molecular level is required.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验