Wang Y T, Bieger D, Neuman R S
Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
Brain Res. 1991 Dec 20;567(2):260-6. doi: 10.1016/0006-8993(91)90804-5.
The involvement of N-methyl-D-aspartate (NMDA) excitatory amino acid subtype receptors in synaptically driven excitatory responses of ambigual motoneurons was investigated in vivo and in vitro. In urethane-anaesthetized rats, fictive oesophageal peristalsis evoked by topical application of muscarine (0.05-0.5 nmol) to the dorsal surface of the solitarial complex (NTS) was reversibly blocked by ipsilateral intraambigual injection of DL-2-amino-7-phosphonoheptanoic acid (AP-7, 0.5-1.5 nM) and (+-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 0.5-1.5 nM). In brainstem sagittal slices, post-synaptic potentials were recorded from neurons of the compact formation of the nucleus ambiguus (AMBc). Stimulation of presumptive NTS afferents elicited a complex excitatory postsynaptic potential (EPSP) which usually consisted of both a high-threshold fast (HTF) and a low-threshold slow (LTS) component. Bath perfusion with AP-7 (30-50 microM) and CPP (50 microM) selectively blocked the HTF without affecting the LTS component, while kynurenate (1 mM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5-10 microM) nonselectively suppressed both components. With sufficient stimulus strength, the EPSP generated a single spike arising from the HTF component. AP-7 (50 microM) either blocked the spike or increased the firing threshold. Furthermore, at the resting membrane potential, bath-applied NMDA induced a net inward current (269 +/- 189 pA) which had a negative slope in the range of -95 to -35 mV. In conclusion, NMDA receptors participate in solitario-ambigual synaptic transmission under physiological conditions and activation of these receptors is necessary for functional information transfer in this pathway.